• 제목/요약/키워드: Natural frequency analysis system

검색결과 737건 처리시간 0.023초

나노 공진기의 1차 고유진동수에 미치는 링클 영향 연구 (Study of Wrinkle Effect on Primary Natural Frequency of Nano-resonator)

  • 윤주일;강상욱
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1157-1163
    • /
    • 2012
  • Natural frequency of a nano-resonator via nano transfer printing is studied. Through a nano transfer printing, the hybrid metal/polymer membrane may evolve a wrinkle. Natural frequency of a wrinkled hybrid membrane decreases significantly, as the amplitude to wavelength ratio becomes larger. To address the design limit of a hybrid nano resonator, we perform parametric study using finite element analysis. Specifically, we study the effects of the Young's modulus ratio of the metal/polymer membrane, thickness ratio and wrinkle amplitude to wavelength ratio, respectively. The results from the parametric studies can serve as guideline to design hybrid nano resonators.

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

지반의 고유진동수에 따른 면진 원전 격납건물의 지진응답 특성 (Characteristics of Earthquake Responses of an Isolated Containment Building in Nuclear Power Plants According to Natural Frequency of Soil)

  • 이진호;김재관;홍기증
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.245-255
    • /
    • 2013
  • According to natural frequency of soil, characteristics of earthquake responses of an isolated containment building in nuclear power plants are examined. For this, earthquake response analysis of seismically isolated containment buildings in nuclear power plants is carried out by strictly considering soil-structure interactions. The structure and near-field soil are modeled by the finite element method while far-field soil by consistent transmitting boundary. The equation of motion of a soil-structure interaction system under incident seismic wave is derived. The derived equations of motion are solved to carry out earthquake analysis of a seismically isolated soil-structure system. Generally, the results of this analysis show that seismic isolation significantly reduces the responses of the soil-structure system. However, if the natural frequency of the soil is similar to that of the soil-structure system, the responses of the containment buildings in nuclear power plants rather increases due to interactions in the system.

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

승용차 스티어링 칼럼 시스템의 진동해석에 관한 연구 (A Study on the Vibration Analysis of an Automobile Steering System)

  • 김찬묵;김도연
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.494-503
    • /
    • 1998
  • In this paper, in order to analyze dynamic characteristics of an automobile steering system consisting of many components, natural frequencies and transfer functions of each component and the total system are found on a FFT analyzer by experiments. Then, the data are transmitted to a commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of a rubber coupling in column and telescoping effects on system are considered. C.A.E commercial programs are used to compare with the results of experiments. For the finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring element. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency, while the column mode is main mode at higher. The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진 (Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant)

  • 방경보;김철홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

축방향 왕복운동을 하는 외팔보의 동적 안정성 해석 (Dynamic stability analysis of axially oscillating cantilever beams)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.469-474
    • /
    • 1996
  • Dynamic stability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived and transformed into non-dimensional ones. The equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the equations, the multiple scale perturbation method is employed to obtain a stability diagram. The stability diagram shows that relatively large unstable regions exist around the frequencies of the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the diagram is proved by direct numerical simulations of the dynamic system.

  • PDF

다양한 경계조건에서 원판이 결합된 원통 셸의 고유진동 해석 (Analysis of Free Vibration of a Cylindrical Shell with a Circular Plate Under Various Kinds of Boundary Conditions)

  • 임정식;손동성
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.936-948
    • /
    • 1998
  • A theoretical formulation for the analysis of free vibration of a cylindrical shell with a circular plate attached at an arbitrary axial position of the shell under various kinds of boundary conditions was derived and programed to get the numerical results for natural frequencies and mode shapes of the combined system. The boundary conditions of the shell to be considered here are clamped-free, clamped-simply supported, both ends clamped and both ends simply supported. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. The results showed good agreement with those of ANSYS in frequencies and mode shapes. The program will contribute to the design optimization of a shell/plate combined system through the analysis of natural frequencies and mode shapes for the system.

  • PDF

내진안정성을 고려한 비상디젤발전기의 방진베드시스템에 관한 연구 (A Study on the Seismic Isolated Bed System Considering the Seismic Stability of an Emergency Diesel Generator)

  • 하능교;김재실
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1155-1163
    • /
    • 2022
  • This study proposes a technology to ensure the seismic stability of a 1,000 kW diesel engine-type emergency generator by applying a seismic isolated bed system. The technology allows the static analysis by making the first natural frequency of the installed entire emergency generator larger than the earthquake cutoff frequency of 33 Hz. First a three dimensional model for the generator was made with simplification for mode analysis. A new bed system with springs, shock absorbers, stoppers was then devised. Next, The mode analysis for the finite element model equipped by the bed system was performed. the 1st natural frequency above 33 Hz, the seismic safety cutoff frequency, was calculated to be 152.92 Hz. Finally, based on the seismic stability theory, the von-Mises equivalent stresses derived by structural analysis under the Upset and Faulted conditions were 0.01603 Mpa, and 32.06 Mpa, respectively. so seismic stability was confirmed.

배기계 모델링 검증을 위한 주파수 응답 함수의 응용 (Application of Frequency Response Function for Verification of the FEM model of the Exhaust System)

  • 이장명;박성태;김상호
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.1049-1058
    • /
    • 1997
  • To verify the Finite Element Method(FEM) model of an Exhaust System, Frequency Response Function(FRF) is utilized. Up to now, generally, comparisons of natural frequencies and mode shapes of the Exhaust System between numerical analysis and experimental results are adopted to prove completion of the FEM model. However, the comparisons of natural frequencies and mode shapes are not sufficient to have the perfect FEM model of the Exhaust system. Instead of these comparisons. FRF method is introduced for the more accurate FEM model.

  • PDF