• 제목/요약/키워드: Natural discharge

검색결과 387건 처리시간 0.023초

이온풍을 이용한 유기용매의 건조 효율 향상에 관한 실험적 연구 (Experimental study on enhancement of drying efficiency of organic solvent using ionic wind)

  • 이재원;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제17권1호
    • /
    • pp.43-52
    • /
    • 2019
  • 'Ionic wind' is phenomenon induced by corona discharge which occurs when large electric potential is applied to electrodes with high curvature. The ionic wind has advantage that it could generate forced convective flow without any external energy like separate pump. In this study, 'pin-mesh' arrangement is utilized for experiments. First, optimization of configuration is conducted with local momentum of ionic wind behind the mesh. Empirical equation for prediction about velocity profile was derived using the measured results. Secondly, the enhancement of mass transfer rate of acetone with ionic wind was analyzed. Also, the drying efficiency using a fan which has same flow rate was compared with ionic wind for identification of additional chemical reaction. At last, the drying process of organic solvent was visualized with image processing. As a result, it was shown that the use of ionic wind could dry organic matter four times faster than the natural condition.

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon;Choi, Cheon-Kyu;Park, Min-Sik;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.159-166
    • /
    • 2022
  • The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.

Assessing the Suitability of Satellite Precipitation Products for Flood Modeling in the Tonle Sap Lake Basin, Cambodia

  • Oudom Satia Huong;Xuan-Hien Le;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.176-176
    • /
    • 2023
  • The Tonle Sap is the richest and diverseness of freshwater ecosystem in Southeast Asia, receiving nurturing water flows from the Mekong and its immediate basin. In addition, the rapid development in the Tonle Sap Lake (TSL) Basin, and flood inundation may threaten the natural diversities and characteristics. The impacts of flood inundation in 11 sub-basins contributing to the Tonle Sap Lake were assessed using the Rainfall-Runoff-Inundation (RRI) model to quantify the potential magnitude and extent of the flooding. The RRI model is set up by using gauged rainfall data to simulate the information of river discharge and flood inundation of huge possible flood events. Moreover, two satellite precipitation products (SPPs), CHIRPS and GSMaP, within respectively spatial resolutions of 0.05° and 0.1°, are utilized as an input for the RRI model to simulate river discharge, flood depth, and flood extent for the great TSL Basin of Cambodia. This study used statistical indicators such as NSE, PBIAS, RSR, and R2 as crucial indices to evaluate the performance of the RRI model. Therefore, the findings of this study could provide promising guidance in hydrological modeling and the significant implications for flood risk management and disaster preparedness in the region.

  • PDF

낙동강 수계 하.폐수 처리시설의 방류수가 조류 성장 잠재력에 미치는 영향 (Effect of the Sewage and Wastewater Plant Effluent on the Algal Growth Potential in the Nakdong River Basin)

  • 서정관;이재정;양상용;정익교
    • ALGAE
    • /
    • 제18권2호
    • /
    • pp.157-167
    • /
    • 2003
  • Effect of the effluent of the sewage and wastewater plants on the algal growth was investigated from the 19 plants located in the Nakdong river basin. Most of the samples showed high values of the algal growth potential (AGP) when they were mixed with natural river water at 20% of final concentration. At 20% of the mixing ratio, the mixed effluents of sewage and wastewater showed 3.5 and 1.8 times higher AGP than those of the natural river water. The higher AGP values are attributable to the high contents of phosphorus and ammonium in the effluent. The mixing ratio of effluents of the discharge/river flow was highest in the Kumho River (42.8%) followed by the middle of Nakdong River (22.7%), Kam Stream (13.9%), Byungsung Stream (13.3%), Yangsan Stream (7.9%), and Young River (5.4%). Comparison of the trophic state of the effluents with natural river water indicated that the effluents showed higher trophic values than natural water. Concentrations of total phosphorus, total nitrogen and conductivity in the effluents were 12.3, 4.9 and 5.3 times higher than the those found in natural river water respectively. The AGP values were highly related with the trophicity of the water especially on the concentrations of phosphate and ammonium. Toxicities of the treated sewage water, wastewater and livestock waste water tested by the luminescent bacteria, Vibrio fischerii were generally low.

Impact of Baseflow on Fish Community in the Ungcheon Stream, Korea

  • Choi, Byungwoong;Oh, Woo Seok;Kim, Nam Shin;Cha, Jin Yeol;Lim, Chi Hong
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제2권4호
    • /
    • pp.235-246
    • /
    • 2021
  • This study investigated the impact of baseflow on fish community in the Ungcheon stream (16.5 km long) located downstream of the Boryeong Dam, Korea. Based on field monitoring, there were five dominant fish species in the Ungcheon Stream accounting for 75% of the total fish community: Zacco platypus, Zacco koreanus, Tridentiger brevispinis, Rhinogobius brunneus, and Pungtungia herzi. These five fish species were selected as target species. HydroGeoSphere (HGS) and River2D models were used for hydrologic and hydraulic simulations, respectively. A habitat suitability index model was used to simulate fish habitat. To assess the impact of baseflow, each representative discharge was examined with or without baseflow. The HGS model was used to calculate baseflow within the study reach. This baseflow was observed to increase gradually with longitudinal distance. Validation of the hydraulic model dem onstrated that computed water surface elevated when baseflow was included, which was in good agreement with measured data, as opposed to the result when baseflow was excluded. Composite suitability index distributions and weighted usable area in the study reach were presented for target species. Simulations indicated that the baseflow significantly increased habitat suitability for the entire fish community. These results demonstrate that there should be a substantial focus on the baseflow for physical habitat simulation.

풍쇄 슬래그의 샌드매트 대체 가능성에 대한 실험적 연구 (An Experimental Study for Substitutability of Sand Mat with Precious Slag Ball)

  • 신은철;이운현;강정구
    • 한국지반신소재학회논문집
    • /
    • 제9권2호
    • /
    • pp.1-9
    • /
    • 2010
  • 연약지반 개량을 위한 수평배수공법으로 샌드매트 공법이 활발하게 사용이 되고 있다. 그러나 현재 압밀침하를 촉진시키는 재료로써 샌드매트에 관련하여 문제점들이 발생하고 있다. 무엇보다도, 샌드매트공법에 요구되는 모래의 양이 증가함에 따라 공급이 원활하게 이루어지고 있지 않은 상태이다. 또한, 수많은 건설현장에서 모래 및 골재의 무분별한 채취로 인하여 생태환경의 파괴 및 천연적인 자연경관의 손상을 초래하고 있다. 따라서 본 연구에서는 이러한 문제점을 해결하고자 샌드매트 대체제로서 풍쇄 슬래그의 사용이 적합한지를 판단하기 위하여 기본 물성시험, 실내 통수능 시험, 침하특성 분석과 현장모형을 실험을 통한 통수능과 침하특성, 프로그램을 통한 침하특성을 통해서 확인하고자 한다.

  • PDF

수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구 (An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine)

  • 김인구;손지환;김정화;김정수;이성욱;김선문
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

DR3M-II를 이용한 도시배수유역의 유출해석 (Runoff Analysis of Urban Drainage Using DR3M-II)

  • 민상기;이길춘
    • 한국수자원학회논문집
    • /
    • 제38권9호
    • /
    • pp.699-711
    • /
    • 2005
  • 미국 지질조사국(U.S Geological Survey)의 강우-유출모형 DR3M-II(Distributed Routing Rainfall-Runoff Model)를 이용해 도시배수유역의 유출해석을 수행하였다. DR3M-II는 강우사상을 입력자료로 하여 수지상의 관거 또는 자연수로망으로 구성된 도시유역에서의 유출추적을 위해 개발된 모형이다. 대상유역인 산본신도시에서의 실측유출자료를 이용한 모형의 검정 및 검증을 수행하였으며, Rosenbrock기법을 이용해 최적매개변수를 유도하였다. 검증결과 첨두유출량의 평균오차는 $7.4\%$로 상당히 양호한 결과를 보여주었다. 매개변수에 대한 민감도 분석결과 비교적 작은 강우강도의 비가 내릴 경우는 유효 불투수지역의 면적이 첨두유출량이나 유출체적에 가장 민감한 영향을 미치는 인자였으나, 큰 강우강도에서는 조도계수와 유역경사를 정의하는 운동파방정식의 계수 ${\alpha}$가 가장 민감한 영향을 미치는 인자인 것으로 나타났다. 대체적으로 첨두유출량보다는 유출체적이 침투능이나 토양함수조건을 정의하는 매개변수에 보다 민감한 반응을 보였으며, 매개변수 ${\alpha}$는 첨두유출량에 보다 민감한 영향을 미치는 것으로 나타났다.

CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구 (An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine)

  • 김인구;손지환;김정화;김선문;김정수;이성욱
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

자연강우에 의한 간척지토양의 이화학적 특성변화 (Changes of physico-chemical properties in the reclaimed tidal land soils by precipitation)

  • 김재영;손재권;구자웅;최진규
    • 농촌계획
    • /
    • 제8권1호
    • /
    • pp.3-14
    • /
    • 2002
  • Changes of chemical properties by times of the reclaimed tidal land soils and soil surface water, underground infiltration water with precipitation-runoff on natural meteological condition in the unripened tidal reclaimed paddy fields were investigated. This study was carried out to use environment-friendly farm land in the reclaimed tidal lands. The soils used in this study were saline-alkaline soils with the high $Na^+$ and $Mg^{++}$ content. As the results of investigation outflow loading of nutriments through outflow water in the unripened tidal reclaimed paddy fields by precipitation during the survey period, nutriments equivalent to T-N $1{\sim}2\;kg\;10a^{ -1}$ and T-P $0.01{\sim}0.02\;kg\;10a^{-1}$ from in the unripened tidal lands were discharged. Besides, the results of comparison losses of cation through outflow water showed $Na^+>\;K^+>\;Mg^{++}\;>\;Ca^{++}$, and the highest appeared water discharge of $Na^+$. In case of saemangeum reclaimed tidal land soils water discharge of cations showed $Ca^{++}$ 1.3 kg $10a^{-1}$, $Mg^{++}$ 1.6 kg $10a^{-1}$, $Na^+$ 17.7 kg $10a^{-1}$, and $K^+$ 3.2 kg $10a^{-1}$ respectively. On the other hand, in case of koheung reclaimed tidal lands soils water discharge of cations showed $Ca^{++}$ 18.1 kg $10a^{-1}$, $Mg^{++}$ 31.2 kg $10a^{-1}$, $Na^+$ 320.8 kg $10a^{-1}$ and $K^+$ 51.2 kg $10a^{-1}$ respectively.