• Title/Summary/Keyword: Natural diamonds

Search Result 26, Processing Time 0.027 seconds

Characterization of High Pressure-High Temperature Treated Gem Diamonds (고압고온 처리된 보석용 다이아몬드의 감별 연구)

  • Song, Oh-Sung
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.5
    • /
    • pp.229-234
    • /
    • 2006
  • Diamonds have been widely employed as polishing media for precise machining and noble substrates for microelectronics. The recent development of the split sphere press has led to the enhancement of low quality natural diamonds. Synthesized and treated diamonds are sometimes traded deceptively as high quality natural diamonds because it is hard to distinguish among these diamonds with conventional gemological characterization method. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. We proposed using new methods of UV fluorescence and X-ray Lang topography for checking the local HPHT stress field to distinguish these diamonds from natural ones. We observe unique differences in the local stress field images in treated diamonds using UV fluorescence and Lang topography characterization. Our result implies that our proposed methods may be appropriate for identification of the treated diamonds.

Identification of High Pressure-High Temperature Treated Gem Diamonds using a Micro-Raman Spectroscopy (고압고온 처리된 보석용 다이아몬드의 마이크로라만 분석에 의한 감별 연구)

  • Song, Oh-Sung;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.817-822
    • /
    • 2006
  • Diamonds have been widely employed as polishing media for precise machining and noble substrates for microelectronics. The recent development of the split sphere press has led to the enhancement of low quality natural diamonds. Synthesized and treated diamonds are sometimes traded deceptively as high quality natural diamonds because it is hard to distinguish among these diamonds with conventional gemological characterization method. Therefore, we need to develop a new identification method that is cheap, fast, and non-destructive. We proposed using a new method of micro-Raman spectroscopy for checking the local HPHT residual stress to distinguish these diamonds from natural ones. We observe unique ~10f compressive and tensile strains at Type I and Type II diamonds after HPHT treatment. Our result implies that our proposed methods may be appropriate fur identification of the treated diamonds with appropriate reference samples.

  • PDF

Appraising elements of natural diamonds and influences on the value (천연 다이아몬드의 평가요소 및 그 가치에 미치는 영향)

  • 김상기;배상덕;최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.105-109
    • /
    • 2004
  • In this study, we analyzed the influences of appraising elements such as weight, color and clarity of natural diamonds on their value in the round brilliant cut diamonds. To analyze the influences of these elements on the value of diamonds, data were made from a Rapaport Diamond Report which is the most reliable source of diamond prices. As the result of this study, it is clearly understood that color and clarity equally influenced the value of diamonds as a whole, but there were some partial variations according to grades of both elements. That is, value of clarity was higher than that of color in higher-quality diamonds but value of clarity was lower than that of color in lower-quality diamonds. Also, value of diamonds were closely co-related by three main elements which were weight, color and clarity, but weight was the most influencing element on the value of natural diamonds.

A Study on the Characteristics of Natural, Synthetic, and Treated Gem Quality Diamonds by NMR and EPR (NMR과 EPR을 이용한 천연, 합성, 그리고 처리된 보석용 다이아몬드의 특성 연구)

  • Kim, Jong-Rang;Jang, Yun-Deuk;Kim, Sun-Ha;Kim, Jong-Hwa;Paik, Youn-Kee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.435-442
    • /
    • 2008
  • Natural, synthetic, and treated diamonds were studied by NMR and EPR. It was demonstrated that natural and synthetic diamonds, treated and non-treated diamonds, high pressure high temperature (HPHT) treated and electron beam treated diamonds could be distinguished among each other based on the $^{13}C$ NMR spectra acquired for relatively short periods of 100 minutes. The $^{13}C$ NMR linewidths of gem quality synthetic diamonds were broader than 1.6 ppm due to the paramagentic effects of transition metals, generally used as catalysts, while the linewidths of gem quality natural diamonds were narrower than 0.5 ppm regardless of the methods of treatment. The linewidth (0.5 ppm) for a HPHT treated, gem quality natural diamond was as broad as more than twice of the linewidth (0.2 ppm) of an electron beam treated diamond. The $^{13}C$ NMR signal intensities of treated, gem quality natural diamonds were as strong as more than 10 times of the intensities of non-treated, gem quality natural diamonds. When correlated with the concentrations of the paramagnetic defects (electrons) obtained from the EPR spectra, the relative $^{13}C$ NMR signal intensities increased in proportion to the concentrations of the paramagnetic electrons contained in each sample but the electron beam treated diamond was an exception. This suggested that the lattice component, in addition to the paramagnetic defect component, should also be considered in determining the $^{13}C$ NMR signal intensity of the electron beam treated diamond.

Investigation on Optical Properties of Natural Brown Diamonds with Various Types by High Pressure and High Temperature Treatment

  • Bai, Jong-Hyuck;Seo, Jin-Gyo;Shon, Shoo-Hack;Ahn, Yong-Kil;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.278-288
    • /
    • 2010
  • High Pressure High Temperature (HPHT) treatment can significantly change the color of diamonds. We studied the variation of the optical properties according to the nitrogen arrangement in natural brown diamonds of various types (type IaAB, type IaB, type IaA > B, type IaA < B, IaA = B) after HPHT treatment. The diamonds with different arrangements of nitrogen were annealed at temperatures in the range $1700-1800^{\circ}C$ under a stabilizing pressure of 5 GPa. HPHT treated samples were analyzed using UV-Vis-NIR, FT-IR, and PL spectroscopy. The absorption and luminescence spectra were measured to compare the variations of nitrogen arrangement in the natural brown diamonds before and after HPHT treatment. After HPHT treatment, the brown coloration in all types of diamonds was reduced and a decrease in the peaks related to the A-aggregate of nitrogen was more predominant than the B-aggregate. Furthermore, the peaks related to N3 (415.4 nm), H4 (496.4 nm), and platelet decreased and the peaks related to H3 (503.2 nm) and G-band increased after HPHT treatment. In conclusion, spectroscopic analysis of natural brown diamonds after HPHT treatment showed that a yellow color was produced by absorption in the H3 centers and a green color was generated by interaction between absorptions of the H3 and H2 centers.

Identification of Synthetic and HTHP treated Diamonds (합성과 고온고압처리 다이아몬드의 감별 연구)

  • Song Ohsung;Kim Dugjoong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.395-402
    • /
    • 2004
  • We need to develop technology of identifying high temperature high pressure(HTHP) synthetic diamond and HTHP treated natural diamonds from untreated natural diamonds to cope with sophisticated diamond enhancing technology. We had successfully identified synthetic diamonds using a vibrating sample magnetometer due to their ferromagnetic property. In addition, we identified the HTHP enhanced TypeIa, TypeIIa diamonds by employing non-destructive Fourier Transform Infrared(FTIR) spectroscopy.

  • PDF

Properties of the Natural and CVD Synthetic Diamonds for Identification (천연과 CVD 합성 다이아몬드의 감별을 위한 물성 연구)

  • Kim, Yunwoo;Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.350-356
    • /
    • 2014
  • Recently, Chemical Vapor Deposition (CVD) synthetic diamonds have been introduced to the jewelry gem market, as CVD technology has been making considerable advances. Unfortunately, CVD diamonds are not distinguishable from natural diamonds when using the conventional gemological characterization method. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. In our study, we employed optical microscopy and spectroscopy techniques, including Fourier transform infra-red (FT-IR), UV-VIS-NIR, photoluminescence (PL), micro Raman, and cathodoluminescent (CL) spectroscopy, to determine the differences between a natural diamond (0.30 cts) and a CVD diamond (0.43 cts). The identification of a CVD diamond was difficult when using standard gemological techniques, UV-VIS-NIR, or micro-Raman spectroscopy. However, a CVD diamond could be identified using a FT-IR by the Type II peaks. In addition, we identified a CVD diamond conclusively with the uneven UV fluorescent local bands, additional satellite PL peaks, longer phosphorescence life time, and uneven streaks in the CL images. Our results suggest that using FT-IR combined with UV fluorescent images, PL, and CL analysis might be an appropriate method for identifying CVD diamonds.

Characteristics of gem-quality synthetic diamond from New Diamond Technology in Russia (러시아의 뉴 다이아몬드 테크놀러지에서 생산된 보석용 합성 다이아몬드의 특성)

  • Choi, Hyunmin;Kim, Youngchool
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.188-192
    • /
    • 2015
  • Gemological and spectroscopic properties of HPHT synthetic diamonds from New Diamond Technology (NDT) company in St. Petersburg (Russia) were examined. Their color (colorless, near-colorless with some boron and Fancy blue with high boron content) and clarity ($VVS-SI_1$) grades were comparable to those of top natural diamonds. NDT synthetic diamonds fluoresced and phosphoresced blue or orange under SWUV light. Photoluminescence spectra revealed H3 center with very small intensity and NV centers. The intensity of H3 in NDT synthetic diamond has very weak in comparison with natural one. Using a combination of gemological and spectroscopic tests, gem-quality synthetic diamonds from NDT can be distinguished from natural diamonds of similar quality.

Identification for the Vivid Yellow Diamonds (비비드 옐로우 다이아몬드의 감별 방안 연구)

  • Song, Jeongho;Yun, Yury;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.493-497
    • /
    • 2012
  • We propose a new reliable, fast, and low cost identification method for similarly looking 0.3ct vivid yellow color of natural, HPHT treated, and synthesized diamonds. Conventional optical microscopy as well as low temperature PL(photoluminescence), FT-IR, UV-VIS-NIR, micro-Raman spectroscopy, and vibrating sample magnetometry(VSM) characterization were executed. We could not distinguish the natural diamonds from the treated or the synthesized stones with an optical microscopy, PL, FT-IR, and UV-VIS-NIR spectroscopy. However, we could identify the treated diamond with micro-Raman spectroscopy due to unique $1440cm^{-1}$ peak appearance. VSM revealed easily the synthesized diamond because of its ferromagnetic behavior. Our preliminary propose on employing the Micro-Raman spectroscopy and VSM might be suitable for identification of the similar looking vivid yellow colored diamonds.

Identification of natural colored diamonds using UV fluorescent and X-ray Lang images (UV 형광과 X-선 Lang 표면이미지를 이용한 천연유색다이아몬드의 감별 연구)

  • Kim, Jun-Hwan;Ha, Jun-Seok;Kim, Ki-Hoon;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3540-3545
    • /
    • 2009
  • Due to recent development of high temperature high pressure(HTHP) diamond synthetic and treatment technology, we need to identify the natural diamonds fast, reliable, and economically. We proposed using new method of UV fluorescence and X-ray Lang topography imaging for distinguishing one synthetic diamond from four natural colored diamonds. We observe unique local stress field uneven image in synthetic diamond using UV fluorescence and Lang topography characterization, while uniform images in natural diamonds. Especially, X-ray Lang method offered the better identification power with better high resolution on stress field images.