• Title/Summary/Keyword: Natural background radiation

Search Result 61, Processing Time 0.02 seconds

The Evaluation of Measuring about Natural Background Radiation according with Camping Place (캠핑장소에 따른 자연방사선량 관한 측정 평가)

  • Jung, Hongmoon;Won, Doyeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.2
    • /
    • pp.117-120
    • /
    • 2015
  • The number of campers has been consistently growing thanks to the introduction of a five-day work week and the time increase for a leisure. Thus, many types of facilities for camping are constructed. For instance, there are gravel camp site, which is called crushed stone, and normal soil camp site in case of private camp sites. The amount of natural background radiation, measured from site to site, was analyzed. The value of soil camp site was lower than that of crushed stone camp site. And the amount of natural background radiation from normal camp site was also lower than that from the artificial shade made by tarp. Consequently, it is noted that normal soil camp site with the plenty of woods should be chosen for camping place in order to avoid natural background radiation.

Growth and Decay of Alpha Tracks in a Large Scale Cloud Chamber after Injection of Radon

  • Wada, Shinichi;Kobayashi, Tsuneo;Katayama, Yoshiro;Iwami, Toshiaki;Kato, Tsuguhisa;Cameron, John R.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.275-278
    • /
    • 2002
  • The recognition of the natural background radiation is important not only for radiological education but also for the promotion of people's scientific view about radiation. We made a "room" on the web showing natural background radiation as part of a VRM (Virtual Radiation Museum). The "room" shows the video images of the tracks of charged particles from natural background radiation, alpha and beta ray track from known sources using a Large Scale Diffusion Cloud Chamber. The purpose of this study is to make clear the origin of a kind of track (named A-track) which is thick and easy to recognize with the length less than several cm in the cloud chamber, and to make numerical explanation of its counting rate. The study was carried out using a Large Scale Diffusion Cloud Chamber (Phywe, Germany) installed in the Niigata Science Museum. The Model RNC (Pylon Electronics, Canada) was used as Rn-222 source. Ra-226 activity in RNC was 111.6 Bq calibrated with NIST protocol. Rn-222 gas was injected into the cloud chamber. Continuous video recording with use of Digital Handycam (SONY, Japan) was carried out for 360 min. after injection of Rn-222 gas. The number of alpha-ray track (alpha track) in the video images was analyzed. The growth and decay curve of the total activity of Rn-222 and its alpha emitting progeny were calculated and compared with the count of the alpha tracks. As a result the alpha tracks formed by Rn-222 injection resemble A-Tracks. The relationship between A-track in the cloud chamber and atmospheric Rn is discussed.

  • PDF

Status of Medical Exposure in Korea

  • Yoon, Sei-Chul;Kim, Il-Han;Kim, Sung-Hoon;Kim, Hyuck-Joo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.96-98
    • /
    • 2010
  • Medical use of radiation is increasing in recent times and its influence on the population creates almost the same amount of annual natural background radiation in industrialized countries in particular. Thus, medical radiation has become a social issue. This paper is a brief report on the status of medical exposure in Korea by way of consulting from the radiation-related medical societies in Korea.

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

Radiotoxicity flux and concentration as complementary safety indicators for the safety assessment of a rock-cavern type LILW repository

  • Jo, Yongheum;Han, Sol-Chan;Ok, Soon-Il;Choi, Seonggyu;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1324-1329
    • /
    • 2018
  • This study presents a practical application of complementary safety indicators, which can be applied in a safety assessment of a radioactive waste repository by excluding a biosphere simulation and comparing the artificial radiation originating from the repository with the background natural radiation. Complementary safety indicators (radiotoxicity flux from geosphere and radiotoxicity concentration in seawater) were applied in the safety assessment of a rock-cavern type low and intermediate level radioactive waste (LILW) repository in the Republic of Korea. The natural radionuclide ($^{40}K$, $^{226,228}Ra$, $^{232}Th$, and $^{234,235,238}U$) concentrations in the groundwater and seawater at the Gyeongju LILW repository site were measured. Based on the analyzed concentrations of natural radionuclides, the levels of natural radiation were determined to be $8.6{\times}10^{-5}$ - $8.0{\times}10^{-4}Sv/m^2/yr$ and $6.95{\times}10^{-5}Sv/m^3$ for radiotoxicity flux from the geosphere and radiotoxicity concentration in seawater, respectively. From simulation results obtained using a Goldsim-based safety assessment model, it was determined that the radiotoxicity of radionuclides released from the repository is lower than that of the natural radionuclides inherently present in the natural waters. The applicability of the complementary safety indicators to the safety case was discussed with regard to reduction of the uncertainty associated with biosphere simulations, and communication with the public.

Proposing a Simple Radiation Scale for the Public: Radiation Index

  • Cho, Gyuseong;Kim, Jong Hyun;Park, Tae Soon;Cho, Kunwoo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.598-608
    • /
    • 2017
  • A new radiation scale is proposed. With empathy toward the vast majority of people who are not well versed in radiation and related matters, and thus suffering from misunderstanding that breeds unnecessary fear of radiation, the aim of proposing a new radiation scale, radiation index (RAIN), is to put the general public at ease with the concept of radiation. RAIN is defined in dimensionless numbers that relate any specific radiation dose to a properly defined reference level. As RAIN is expressed in plain numbers without an attached scientific unit, the public will feel comfortable with its friendly look, which in turn should help them understand radiation dose levels easily and allay their anxieties about radiation. The expanded awareness and proper understanding of radiation will empower the public to feel that they are not hopeless victims of radiation. The correspondence between RAIN and the specific accumulated dose is established. The equivalence will allow RAIN to serve as a common language of communication for the general public with which they can converse with radiation experts to discuss matters related to radiation safety, radiation diagnosis and therapy, nuclear accidents, and other related matters. Such fruitful dialogues will ultimately enhance public acceptance of radiation and associated technologies.

Assessment of External Radiation Dose for Workers in Domestic Water Treatment Facility According to the Working Type (국내 수처리시설 종사자 작업유형에 따른 외부피폭방사선량 평가)

  • Seong Hun Jeon;Seong Yeon Lee;Hyeok Jae Kim;Min Seong Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • The International Atomic Energy Agency (IAEA) proposes 11 industries that handle Naturally Occurring Radioactive Material (NORM) that are considered to need management. A water treatment facility is one of the above industries that takes in groundwater and produces drinking water through a water treatment process. Groundwater can accumulate natural radionuclides such as uranium and thorium in raw water by contacting rocks or soil containing natural radionuclides. Therefore, there is a possibility that workers in water treatment facilities will be exposed due to the accumulation of natural radionuclides in the water treatment process. The goal of this study is to evaluate the external radiation dose according to the working type of workers in water treatment facilities. In order to achieve the above goal, the study was conducted by dividing it into 1) analysis of the exposure environment, 2) measurement of the external radiation dose rate 3) evaluation of the external radiation dose. In the stage of analyzing the exposure environment, major processes that are expected to occur significantly were derived. In the measurement stage of the external radiation dose rate, a map of the external radiation dose rate was prepared by measuring the spatial radiation dose rate in major processes. Through this, detailed measurement points were selected considering the movement of workers. In the external radiation dose evaluation stage, the external radiation dose was evaluated based on the previously derived external radiation dose rate and working time. As a result of measuring the external radiation dose rate at the detailed points of water treatment facilities A to C, it was 1.90×10-1 to 3.75×100 μSv h-1, and the external radiation dose was analyzed as 3.27×10-3 to 9.85×10-2 mSv y-1. The maximum external radiation dose appeared during the disinfection and cleaning of activated carbon at facility B, and it is judged that natural radionuclides were concentrated in activated carbon. It was found that the external radiation dose of workers in the water treatment facility was less than 1mSv y-1, which is about 10% of the dose limit for the public. As a result of this study, it was found that the radiological effect of external radiation dose of domestic water treatment facility workers was insignificant. The results are expected to contribute as background data to present optimized safety management measures for domestic NORM industries in the future.

An Investigation on The Necessity of the Use of Radiation and The Recognition of Radiation Hazard among College Students (방사선 이용의 필요성 및 인체장해에 대한 대학생의 인식조사)

  • Han, Eun-Ok;Moon, In-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.7
    • /
    • pp.51-58
    • /
    • 2006
  • Background & Objectives: This study investigates the recognition on the necessity of the use of radiation for both college students who are considered that they have a high knowledge level in radiation and proposes basic materials to change the recognition of the use of radiation. Also, the investigation was applied to average people who showed the most negative attitudes on radiation. Methods: A questionnaire was applied to 600 college students for five days from October 10 to 15, 2005 and used in statistical analysis. Results: The average value obtained in the recognition of the use of radiation was 76.60 points in which male respondents who were majored in natural science, health, and engineering department and respondents who have experienced radiation related education, radiation diagnosis, and radiation treatment demonstrated higher levels. Also, the average value obtained in the recognition of the radiation damage was 71.66 points in which respondents who were majored in natural sciences, humanities, engineering, and health department showed higher levels than that of respondents who were majored in art and physical department. Groups that exhibited higher recognition levels in the necessity of the use of radiation were male respondents and respondents who were majored in natural science, humanities, and health department and have experienced radiation diagnosis and radiation treatment. In the results of the correlation analysis on the necessity of the use of radiation and recognition of radiation damages, the recognition of radiation damages was presented as negative attitudes in the case of the higher recognition level in the necessity of the use of radiation. Conclusions: Regarding the frequency of the use of radiation in Korea, a 80.9% of university students who showed a high education level had no experiences in radiation related education. Although they showed a relatively high level of 76.6 points in the recognition level of the necessity of the use of radiation, the negative attitude on the radiation damage was also presented as a high level of 71.7 points. Because the providing chance of radiation related information was limited as compared to the atomic power used in Korea and dependancy of the use of radiation, it is necessary to provide the basic information related in the use of radiation to the public. In addition, various investigations on the use of radiation and such negative attitudes are required in future for the public. Also, the correct information of the radiation safety should be delivered to the public.

  • PDF

The status of NORMs in natural environment adjacent to the Rooppur nuclear power plant of Bangladesh

  • Haydar, Md Abu;Hasan, Md Mehade;Jahan, Imrose;Fatema, Kanij;Ali, Md Idris;Paul, Debasish;Khandaker, Mayeen Uddin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4114-4121
    • /
    • 2021
  • The Rooppur Nuclear Power Plant (RNPP), the first nuclear power plant in Bangladesh with a capacity of 2.4 GWe, is under construction on the bank of the river Padma, at Rooppur in Bangladesh. Measurement of background radioactivity in the natural environment adjacent to RNPP finds great importance for future perspectives. Soil and sediment samples collected from upstream and downstream positions of the Padma River (adjacent to RNPP) were collected and analyzed by HPGe gamma-ray spectrometry for primordial radionuclides. The average activity concentrations (in Bqkg-1) of 226Ra, 232Th and 40K radionuclides in soil samples were found to be 44.99 ± 3.89, 66.28 ± 6.55 and 553 ± 82.17 respectively. Respective values in sediment samples were found to be 44.59 ± 4.58, 67.64 ± 7.93, 782 ± 108. Relevant radiation hazard indices and dosimetric parameters were calculated and compared with the world average data recommended by US-EPA. Analytical results show non-negligible radiation hazards to the surrounding populace. Measured data will be useful to monitor any change of background radioactivity in the surrounding environment of RNPP following its operation for the generation of nuclear energy.