• Title/Summary/Keyword: Natural attenuation

Search Result 159, Processing Time 0.033 seconds

Critical Review of Redox Processes in Aquifers Contaminated with Landfill Leachate (매립지 침출수에 의해 오염된 대수층 내에서의 산화-환원 과정에 대한 고찰)

  • Kang, Kihoon;Park, Heekyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.385-399
    • /
    • 2000
  • Groundwater contamination caused by landfill leachate leads to various changes in aquifer environment according to the characteristics of incoming contaminants and aquifer geochemistry. These changes in aquifer environment are known to contribute to the natural attenuation phenomena of contaminants. The knowledge on changes in aquifer environment is necessary to determine the extent of groundwater pollution, to assess risk of the pollution, and to develop an appropriate remediation technologies. In this paper, the changes in aquifer environment caused by landfill leachate development of various redox zones-and the natural attenuation phenomena occurred in each redox zone are reviewed. From this review, an appropriate research direction and control action is presented for the groundwater pollutions caused by unsanitary landfills scattered across the nation.

  • PDF

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.

TPH Removal of the Biodegradation Process Using 4 Indigenous Microorganisms for the Diesel Contaminated Soil in a Military Camp (디젤로 오염된 군부대 토양에 대하여 토착미생물 4종을 이용한 생분해법의 TPH 제거 효율 규명)

  • Park, Min-Ho;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2012
  • Batch experiments using indigenous and commercialized adventive microorganisms were performed to investigate the feasibility of the biodegradation process for the diesel contaminated soil, which was taken in US Military Camp 'Hialeah', Korea. TPH concentration of the soil was determined as 3,819 mg/kg. Four indigenous microorganisms having high TPH degradation activity were isolated from the soil and by 16S rRNA gene sequence analysis, they were identified as Arthrobacter sp., Burkholderia sp., Cupriavidus sp. and Bacillus sp.. Two kinds of commercialized solutions cultured with adventive microorganisms were also used for the experiments. Various biodegradation conditions such as the amount of microorganism, water content and the temperature were applied to decide the optimal bioavailability condition in the experiments. In the case of soils without additional microorganisms (on the natural attenuation condition), 35% of initial TPH was removed from the soil by inhabitant microorganisms in soil for 30 days. When the commercialized microorganism cultured solutions were added into the soil, their average TPH removal efficiencies were 64%, and 54%, respectively, which were higher than that without additional microorganisms. When indigenous microorganisms isolated from the contaminated soil were added into the soil, TPH removal efficiency increased up to 95% (for Bacillus sp.). According to the calculation of the average biodegradation rates for Bacillus sp., the remediation goal (87% of the removal efficiency: 500 mg/kg) for the soil would reach within 24 days. Results suggested that TPH removal efficiency of biodegradation by injecting indigenous microorganisms is better than those by injecting commercialized adventive microorganisms and only by using the natural attenuation.

Assessment of Monitored Natural Attenuation as Remediation Approach for a BTEX Contaminated Site in Uiwang City (의왕시내 BTEX 오염 부지에서의 자연 정화법 이용 적합성 고찰)

  • 이민효;윤정기;박종환;이문순;강진규;이석영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.149-156
    • /
    • 1999
  • In the United States (U.S.), the monitored natural attenuation (MNA) approach has been used as an alternative remedial option for organic and inorganic compounds retained in soil and dissolved in groundwater. The U.S. Environmental Protection Agency (EPA) defines the MNA as“in-situ naturally-occurring processes include biodegradation, diffusion, dilution, sorption, volatilization, and/or chemical and biochemical stabilization of contaminants and reduce contaminant toxicity, mobility or volume to the levels that are protective of human health and the environment”. The Department of Soil Environment. National Institute Environmental Research (NIER) is in the process for demonstrating the MNA approach as a potential remedial option for the BTEX contaminated site in Uiwang City. The project is charactering the research site in terms of the nature and extend of contamination, biological degradation rate, and geochemical and hydrological properties. The microbial-degradation rate and effectiveness of nutrient and redox supplements will be determined through laboratory batch and column tests. The geochemical process will be monitored for determining the concentration changes of chemical species involved in the electron transfer processes that include methanogenesis, sulfate and iron reduction, denitrification, and aerobic respiration. Through field works, critical soil and hydrogeologic parameters will be acquired to simulate the effects of dispersion, advection, sorption, and biodegradation on the fate and transport of the dissolved-phase BTEX plume using Bioplume III model. The objectives of this multi-years research project are (1) to evaluate the MNA approach using the BTEX contaminated site in Uiwang City, (2) to establish a standard protocol for future application of the approach, (3) to investigate applicability of the passive approach as a secondary treatment remedy after active treatments. In this presentation, the overall picture and philosophy behind the MNA approach will be reviewed. Detailed discussions of the site characterization/monitoring plans and risk-based decision-making processes for the demonstration site will be included.

  • PDF

MONITORING THE BAY OF BENGAL AS A BALLAST WATER EXCHANGEABLE SEA USING MODIS/AQUA

  • Kozai, Katsutoshi;Ishida, Hiroshi;Okamoto, Ken;Fukuyo, Yasuyo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.483-486
    • /
    • 2006
  • The study describes the monitoring of the Bay of Bengal as a ballast water exchangeable sea using MODIS/Aqua-derived diffuse attenuation coefficient (K(490)) synchronized with in situ ballast water sampling and analysis along the LNG carrier's route between Japan and Qatar from 2002 to 2005. Based on the relationship between K(490) and corresponding in situ plankton cell densities, the Bay of Bengal is recognized as a ballast water exchangeable sea to meet the regulation of ballast water performance standard of International Maritime Organization (IMO). Furthermore the Bay of Bengal with more than 200m depth and more than 200 nautical mile distance from shore is extracted based on the regulation of ballast water exchange area of IMO. However, an anomalously high K(490) area is found off the coast of Sri Lanka during the northeast monsoon in 2005, which corresponds higher cell densities than the criterion set by the regulation of IMO. The phenomenon of high cell density in the Bay of Bengal seems to be related with the phytoplankton bloom during the northeast monsoon. Seasonal and annual variability of phytoplankton bloom will be investigated to establish an early routing system for avoiding the high cell density area in advance.

  • PDF

Damage Evaluation of Porcelain Insulators Using the Frequency Response Function (주파수응답함수(FRF)를 이용한 자기 애자의 손상평가)

  • Choi, In-Hyuk;Son, Ju-Am;Oh, Tae-Keun;Yoon, Young-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.122-128
    • /
    • 2019
  • Porcelain insulators have been used mainly for power line fixing and electrical insulation in transmission towers. Porcelain insulators have generally a 30 years desired life, but over 50% exceed their life expectancy. Since the damage to porcelain insulators is usually accompanied by enormous loss of human resource material, their efficient maintenance has emerged as an important issue. In this regard, this study applied a frequency response function (FRF) for integrity assessment of the insulator. The characteristics of the FRF according to damage types were identified and analyzed by the change in natural frequencies, curve shape, attenuation, and Nyquist diagram stability. The results showed significant differences in the FRF according to damage types, which can be used as basic data for the effective integrity assessment of porcelain insulators.

Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra (계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법)

  • Ji, Hae Yeon;Choi, Da Seul;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

Experimental study of the radiation shielding characteristics of new PbO-Na2O-B2O3-BaO glasses

  • M.I. Sayyed;U. Rilwan;K.A. Mahmoud;Mohamed Elsafi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2437-2443
    • /
    • 2024
  • This work synthesized four glass samples with a fixed ratio of PbO to Na2O and a variable ratio of BaO to B2O3. The linear attenuation coefficient (LAC) (μ, cm-1) and additional attenuator parameters were determined experimentally using a semiconductor detector and different gamma sources. The comparison was carried out between the experimental and the XCOM calculated results, with good agreement emerging between the two results. The impacts of the BaO substituting for the B2O3 on fabricated PNBB glasses' radiation shielding properties were discussed. By increasing the BaO substitution concentration between 10 and 25 mol.%, the LAC μ values (cm-1) increased by 76.60 %, 13.81 %, 12.56 %, and 12.52 % for the respective γ-ray energies of 0.059, 0.662, 1.173, and 1.332 MeV. The μ value reduction with raised gamma energy values increased the values of the calculated half-value thickness (Δ0.5) as a result of the μ and Δ0.5 values' reverse proportionality. Other shielding parameters such as the lead equivalent thickness (Δeq) and radiation protection efficiency were also determined for the present PNBB glass samples.

Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

  • Lee, Su Jeong;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.209-214
    • /
    • 2014
  • Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic $NADP^+$-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

Vibration Characteristics of the Floor Structures inserted with Damping Materials (제진재가 삽입된 바닥 구조의 진동특성)

  • Jeong, Young;Yoo, Seung-Yub;Jeon, Jin-Yong;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.377-380
    • /
    • 2005
  • Damping materials encompass a broad range of materials, including, but not limits to, pressure sensitive adhesives, epoxies, rubbers, foams, thermoplastics, enamels and mastics. Their common characteristic is that their modulus is represented by a complex quantity, possessing both a stored and dissipative energy component. Loss factor of damping material analyzed more than 2 times than rubber to 1.5 $\sim$ 2.3, could know that Damping layer has excellent attenuation performance in side of vibration reduction. Measurements of vibration using accelerometers by adhesion of Damping layer, square Plate by Separation of Damping layer is less binding of Damping layer, analyzed low loss factor and Natural Frequency by free Vibration of Square Plate.

  • PDF