• Title/Summary/Keyword: Natural air drying

Search Result 104, Processing Time 0.02 seconds

DEVELOPMENT OF A GRAIN CIRCULATING TYPE NATURAL AIR IN-BIN DRYER

  • Yun, H.S.;Chung, H.;Cho, Y.G.;Park, W.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.405-412
    • /
    • 2000
  • A natural air in-bin grain dryer with a grain circulator was developed for on farm use. Natural air drying test for rough rice was carried out to evaluate drying rate, uniformity of moisture content distribution in grain bed and energy consumption. It took 10 days to dry 8 ton of paddy rice from 21.9%(w.b) to 16.7%(w.b) moisture contents using the prototype dryer. The average drying rate was 0.52%/day. The uniformity of moisture content after drying was superior to the conventional natural air dryer where is grains were not circulated during drying periods. The dryer performance evaluation index was 738.3KJ/(kg.water), which was more effective than that of grain circulation t)pe hot air dryer(3,500-5,000 KJ/kg.water).

  • PDF

Investigation of Natural Air Drying of Rough Rice Based on The Weather Data in Taegu Area (대구지방의 기상자료를 기초로한 벼의 상온통풍건조에 관한 조사연구)

  • 김재열;서승덕;금동혁;서석건
    • Journal of Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 1980
  • Natural-air drying systems have been extensively used for cereal grains, and many researches on the systems have been conducted in foreign countries. However, little research on drying rough rice with natural air has been done. Especially . little research on natural air drying of rough rice based on weather data has been done in Korean. The objective of this study was to present fundamental data for estimating optimum requirements and basic information available for natural air drying of rough rice based on the weather data . The weather data analyzed in this study were the 10-year (1969 to 1978) record of air temperatures, wet-bulb temperatures and relative humidities, which were three-hourly observations in Taegu area. The results of this study are summarized as follows ; 1 From the results of weather data analysis the average air temperature was about $14.8^\circ$and the average relative humidty 67.5% . Average equilibrium moisture content appeared to be 13.8 percent on wet basis, which showed great potential for natural air drying in Taegue area in October. 2. Possible fan operation time based on the equilibrium moisture content of 15% on wet basis was about 14 hours a day during October in Taegu area. Probabilities of possible drying days based on minimum time available for drying in a day were analyzed. 3. Minimum air flow requirements based on the worst year were determined for different fan operation methods and initial moisture contents.

  • PDF

Development of a Grain Circulating Type Natural Air In-bin Dryer (I) - Development of dryer and analysis of drying performance (곡물 순환식의 상온통풍 건조기 개발(I) - 건조기 개발 및 벼의 건조성능 분석)

  • Yun, H. S.;Chung, H.;Cho, Y. G.;Park, W. K.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.227-232
    • /
    • 2000
  • A natural air in-bin grain dryer with a grain circulator was developed for on farm use. Natural air drying test for rough rice was carried out to evaluate drying rate, uniformity of moisture content distribution in grain bed and energy consumption. It took 10 days to dry 8 ton of paddy rice from 21.9%(w.b) of moisture contents to 16.7%(w.b), by prototype dryer and the average drying rate was 0.52%/day. The uniformity of moisture content after drying was superior to a conventional natural air dryer in which grains were not mixed during drying periods. The dryer performance evaluation index was 738.3kJ/(kg.water), which was more effective than that of grain circulation type hot air dryer(3,500∼5,000 kJ/kg.water)

  • PDF

Review on the Use of Solar Energy for Grain Drying (태양열을 이용한 곡물건조에 관한 연구)

  • 금동혁;고학균;최재갑
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.64-76
    • /
    • 1978
  • A dimensional supply of petroleum fuels and increased competition for petroleum products has made the conservation of energy in grain drying an important cost and management factor. Research on solar grain drying is directed toward utilization of a renewable energy source as an alternative to petroleum fuels for drying. There are many technical and economic problems in accepting and adopting solor energy as a new energy source for grain drying. The purpose of this study are to assess the state of the art of solar grain drying and to find out the problems by reviewing literatures available. The results obtained may be summarized as follows; 1.It may be considered that the weather conditions in October of Korea was satisfactory for the forced natural air and solar heated air drying. 2. Solar energy is considered more applicable to low-temperature, In-storage drying systems than to high-temperature, high-speed drying systems. In-storage drying systems require low levels of heat input. The costs of collector systems to provide low temperature are considerably cheaper than for high-temperature systems. 3. Tubular type collector made of polyvinyle film seems to be the most practical at this stage of development and black-painted bare-plate collectors mounted on the outside of a typical, round, low-temperature drying bin can supply an appreciable amount of the energy efficiently needed for low-temperature grain drying at a lower cost. 4. All of the grains in solar drying tests was successfully dried up to safe storaged moisture levels without significant spoilage. Drying rates with solar system were faster than natural air drying systems, and usually a little slower than similar low-temperature electric drying systems. 5. Final grain moisture levels were lower in solar tests than in natural air tests, and generally higher than in tests with continuous heated air. 6. Savings of energy by use of solar collectors ranged from 23% to 55%, compared to the natural and electric ileated air drying systems. However, total drying cost effectiteness tvas not significant. Therefore, it is desirable that solar grain dry-ing sIFstems tvhich could be suitable for multiple heating purposes on farms shouldbe developed. 7. Supplemental heat with solar radiation did little to reduce air flow requirementsbut refuced drying time and increased the p\ulcornerobability of successful drying duringdrying poriod.

  • PDF

Quality Characteristics of Dried Squid (Todarodes Pacificus) by Cold Air Drying Process (냉풍건조공정을 이용한 마른오징어의 품질특성)

  • Hong, Joo-Heon;Bae, Dong-Ho;Lee, Won-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.635-641
    • /
    • 2006
  • In an attempt to find ways of improving the quality and sanitary state of dried squid, this study compared artificial drying methods i.e. hot air drying and cold air drying with natural drying method. The drying rates of squid were in the order of hot air, cold air and natural drying. However, cold-air drying was slower than natural drying at $7^{\circ}C$. The drying rates increased with increasing drying temperature. When drying temperature was close to the dew point on a dehumidifier surface, which was the case with cold air drying at $7^{\circ}C$, the driving force for dehumidification was lower than under other drying conditions, which resulted in a lower drying rate. There were little color differences between the drying methods and temperature. Squid dried by cold air-drying had better mechanical texture and sensory qualities than with other drying methods. In addition, the cold air drying method maintained superior quality in terms of the contents of amino acids, taurine, EPA, DHA, other fatty acids and a low TBA value than the other drying methods.

Fan and Heater Management Schemes for Layer Filling and Mixing Drying of Rough Rice with Natural Air by Simulation (시뮬레이션에 의한 벼의 누적혼합 상온통풍건조의 송풍기 및 가열기의 운영방법에 관한 연구)

  • 금동혁;한충수;박춘우
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.229-244
    • /
    • 1998
  • This study was performed to determine proper fan and heater management schemes for natural air drying of rough rice in round steel bin with stirring device under Korean weather conditions. A computer simulation model was developed to predict moisture content changes, energy requirements, and drymatter losses during drying of rough rice by natural air. Drying test was conducted to validate the simulation model using round steel bin of holding capacity of 300ton at Rice Processing Complex in Jincheon. The bin was filled with rough rice every day and mixing by stirring device. Moisture contents, ambient air temperatures, relative humidities, static pressures in plenum chamber in the bin, airflow rates, and electrical and fuel energy were measured. Relative errors of moisture content changes predicted by the simulation model were below 5ft, and relative errors of final moisture content, final grain weight, required energy ranged from 0.9% to 6%. These not levels indicated that the simulation model can satisfactorily predict the performance factors of natural air drying system such as drying rates and energr consumptions comparing error level of 10% to 15% in other drying simulation models generally used in dryer desists. Twelve different fan and heater management schemes were evaluated using the computer simulation model based on three hourly weather data from Suweon for the period of 1952-1994. The best management schemes were selected comparing the drymatter losses, required drying times, required energy consumptions. Operating fan without heating only when ambient relative humidity was below 85% or 90% appeared to be the most effective method of In operation in favorable drying weather. Under adverse drying climates or to reduce required drying time, operating fan continuously, and heating air with $1.5^{\circ}C$ temperature rise only when ambient relative humidity was over 85% appeared to be the most suitable method.

  • PDF

A study of natural air drying of rough rice leading to optimization -Part I: Minimum airflow requirement and required drying time (시뮬레이션에 의한 상온통풍건조방법(常溫痛風乾燥方法)의 적정화(適正化)에 관한 연구(硏究) -Part I : 최소소요송풍량(最少所要送風量)과 소요건조시간(所要乾燥時間)의 결정(決定))

  • Han, Young Jo;Koh, Hak Kyun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.83-92
    • /
    • 1981
  • A simulation model of natural air drying to predict the changes of the grain moisture content and dry matter loss of rough rice was developed by the application of mass diffusion theory. A series of simulated drying tests was conducted using the 10 year weather data (1970-1979) obtained from Cheongju, Chuncheon, Daegu, Daejeon, Jeonju, Jinju and Suweon in Korea. System performance factors treated in this study were initial moisture content, airflow rate, bin diameter and grain depth. The results obtained in this study are summarized as follows: 1) The simulation model used in this study was validated with actual experimental results and was applicable to the natural air drying of rough rice. 2) Minimum airflow rates for safe drying were determined for different initial moisture contents and regional weather conditions as shown in Table 6. 3) Equations for estimating drying time and dry matter loss in terms of airflow rate and initial moisture content were derived in the form of an exponential function. 4) These results show that the natural air drying system of rough rice is feasible in Korea even for the poorest drying condition.

  • PDF

Simulation of Drying Grain with Natural Air (곡물의 상온통풍건조 시스템의 시뮬레이션)

  • 금동혁;최재갑;고학균
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.32-45
    • /
    • 1979
  • The major objective of this study was to develope a computer simulation model to analyze drying process in a deep bed with natural air. The approach used to describe the continuous drying process in a deep bed was to divide the process into many small processes and simulate them by consecutively calculating the changes of grain and air conditions that occurred during short increment of time. Success criterion of the drying system was based on grain deterioration estimated by drymatter decomposition during drying. The results of the experimental test showed that the model satisfactory.

  • PDF

Quality Characteristics of Dried Squid(Todarodes Pacificus) by Warm Air Drying (온풍건조방법에 의한 마른 오징어의 품질특성)

  • Joon-Hee Park;Joo-Heon Hong;Won-Young Lee
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.417-423
    • /
    • 2005
  • To replace the traditional drying method with improving the qualities of dried squid, warm air drying method was investigated comparing with natural drying method. In respect of drying rate, about 12 hrs were taken to obtain 25% moisture content -which was considered as proper moisture content to control microbial and quality degradation- by warm air drying at 35$^{\circ}C$. However, 120 hrs were taken to obtain such moisture content by natural drying. The squid dried by warm air showed little color difference and was seemed to be raw squid meat color. TBA values were more rapidly increased but final values were lower, inversely. Free amino acid contents were higher, and cholesterol content was lower in warm air drying.

Simulation of Natural Air Drying of Barley -Comparison of Experimental and Simulated Results- (보리의 상온 통풍건조 시뮬레이션(I) -실험치와 예측치의 비교-)

  • Keum, D.H.;Yi, S.D.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 1990
  • Four models in current use for cereal grain drying, equilibrium model, Morey model, partial differential equation model and simplified partial differential equation model, were modified to be suitable for natural air drying of barley. The predicted by the four models and experimental results were compared. Three models except equilibrium model predicted moisture comtent and grain temperature very well. But equilibrium model overpredicted moisture content and grain temperature of bottom layer. The degree of prediction of the four models for relative humidities of exhaust air didn't differ much from one another and equally the four models predicted relative humidity statisfatorily. Morey model took much shorter computing time than any other models. Therefore, considering the degree of prediction and computing time Morey model was the most suitable for natural air drying of barley.

  • PDF