• Title/Summary/Keyword: Natural aggregate

Search Result 540, Processing Time 0.025 seconds

An Experimental Study for Manufacture of High Quality Recycled Aggregate by Heating (가열방법을 이용한 고품질 순환골재 제조를 위한 실험적 연구)

  • Yoo, Sung-Won;Min, Gyeong-Oan;Her, Yoon;Ha, Heon-Jae;Moon, Jae-Heum
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.65-72
    • /
    • 2011
  • The use of waste concrete can resolve the environmental pollution and shortage of natural aggregate. However, recycled aggregate includes substantial amount of cement paste. So, these aggregates are more porous, and less resistant to mechanical actions than natural aggregates. So, recently, the new manufacture processes of high quality recycled aggregates were suggested such as heating and solving to acid liquid. But the method of solving to acid liquid is not economical and produces additional environmental pollution. In this paper, for the purpose of manufacture of high quality recycled aggregates, the heating processes was added to the existing process of recycled aggregates. To find the optimum process, the experiment was performed by using the method of statistical experiment design, and the heating temperatures(4 levels : 300, 450, 600 and $750^{\circ}C$) and heating times(4 levels : 5, 20, 40, 60 minute) were main experimental variables. By the test results, the optimum manufacturing condition of coarse recycled aggregate was $600^{\circ}C$ and 40 minute, and for the fine recycled aggregate, a little heating made a satisfaction to the KS standard quality code.

Strength of Non-Sintered Cement Mortar Using Ferro-nickel Slag Aggregate (페로니켈 슬래그 골재를 활용한 비소성 시멘트 모르타르의 강도 특성)

  • Youn, Min-Sik;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.17-18
    • /
    • 2022
  • Carbon dioxide emissions in the construction sector account for 38% of all industries, and environmental destruction is occurring due to indiscriminate use of natural resources. The purpose of this study is to develop by-product aggregate Non-Sintered Cement(NSC) that can replace sand used as natural aggregate and Portland cement. Therefore, Ground Granulated Blast Furnace Slag, Type C Fly Ash and Type F Fly Ash are used to replace cement, and water granulated ferro-nickel slag(FNS) is used to replace aggregate. The flow, compressive strength and flexural strength of the formulation using sand as an aggregate and the formulation replacing 100% FNS were compared. As a result of the experiment, the formulation using FNS had higher overall strength than the formulation using sand, and as the substitution rate of Type C fly ash increased, the strength was the best. Formulation using FNS is more fluid than using sand. Through this study, we show the possibility of 100% substitution of FNS and its applicability to secondary concrete products of by-product aggregate NSC.

  • PDF

Performance Evaluation for Dry Shrinkage of Dry Mortar Using Artificial Aggregate Made from Circulating Fludized Bed Combution Ash and Modified CaO Type Expansive Admixture (개질 CaO 팽창재 활용 CFBC 인공잔골재 건조 모르타르의 건조수축 성능평가에 관한 연구)

  • Park, Ji-Sun;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.331-335
    • /
    • 2018
  • The purpose of this study is to investigate the feasibility of CFBC artificial fine aggregate as a substitute for natural aggregate used in dry mortar. The basic performance of the flow, compressive strength and dry shrinkage of the dry mortar was evaluated. Four types of test dry mortar specimens using natural aggregate without expansion admixture, a specimen with modified CaO expansion admixture and natural aggregate, a specimen with modified CaO expansion admixture and CFBC artificial fine aggregate, and a specimen using CFBC artificial fine aggregate without modified CaO expansion admixture were evaluated respectively. As a result of evaluation of drying shrinkage performance at 20th day of age, the dry shrinkage performance of the specimen using modified CaO expansion admixture was found to be the highest at $250{\times}10^{-6}$. On the other hand, the specimen containing the modified CaO expansion admixture with CFBC artificial aggregate exhibited a shrinkage of $410{\times}10^{-6}$, and the drying shrinkage of specimen using natural fine aggregate without expansion admixture was $450{\times}10^{-6}$. When the modified CaO expansion material was used, and exhibited performance equal to or higher than that of the shrinkage-drying property.

Characteristics of red mud-added soil concrete according to aggregate type and binder amount (골재종류 및 바인더량에 따른 레드머드 첨가 흙콘크리트의 특성)

  • Park, Kyu-Eun;Hong, Suk-Wo;Kim, Sang-Jin;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.31-32
    • /
    • 2023
  • In this paper, in order to utilize recycled aggregate as an alternative to natural resources in the construction industry, the physical properties of red mud-added soil concrete according to the type of aggregate and amount of binder were reviewed. The results of using waste asphalt concrete as a natural aggregate substitute were SPS-KSCICO- It was found to satisfy the compressive strength standards for parking lots of 001-2006, and its applicability in the construction industry was judged.

  • PDF

Effects of Temperature and Urea on in vitro Aggregation of Tryptophan Synthase $\alpha$-Subunits

  • Park, Myung-Won;Jeong, Jae-Kap;Shin, Hae-Ja;Lim, Woon-Ki
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.203-207
    • /
    • 2003
  • Protein aggregation could be problematic as causes of diseases and hindrance in the production of useful recombinant proteins. Aggregation of mutant tryptophan synthase $\alpha$-subunits was examined by treatment with urea and at high temperature. Large amorphous aggregate seemed to appear by heat treatment, while more various aggregates in size were formed by treatment with urea at low concentration. The result indicates that different aggregate in size could be formed depending on the treatment condition, suggesting different mechanisms underlying aggregation processes.

  • PDF

Freezing and Thawing Properties of Polypropylene Fiber Reinforced Eco-concrete (폴리프로필렌 섬유보강 에코콘크리트의 동결융해 특성)

  • Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • This study is performed to evaluate freezing and thawing properties of polypropylene fiber reinforced eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The mass loss ratio is decreased with increasing the content of natural coarse aggregate and soil compound, but it is increased with increasing the content of polypropylene fiber. The ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are increased with increasing the content of natural coarse aggregate and soil compound, but it is decreased with increasing the content of polypropylene fiber. The mass loss ratio, ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are $1.49{\sim}3.32%,\;1,870{\sim}2,465\;m/s,\;77X10^2{\sim}225X10^2\;MPa\;and\;84.6{\sim}92.8$ after freezing and thawing 300 cycles, respectively. These eco-concrete can be used for environment-friendly side walk and farm road.

A Study on the Early-Age Strength Properties of Recycled Fine Aggregate Mortar Using Blast Furnace Slag (고로슬래그를 사용한 재생 잔골재 모르타르의 초기강도 특성에 관한 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Seo, Chi-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. Since hydroxide ion concentration of calcium hydroxide(Ca(OH)2) ion erupted from recycled fine aggregate newly produced is over 12. In recycled fine aggregate mortar transposing and using BFS powder, calcium hydroxide(Ca(OH)2) erupted from recycled fine aggregate played a role of stimulus from the day 3 and manifestation of compressive strength was slowly increased with mortar using natural fine aggregate and showed considerable increase from the day 7.

  • PDF

An Experimental Study on the Development of the Dry Manufactured Method for Recycled Fine Aggregate (재생잔골재의 건식제조방식 개발에 관한 실험적 연구)

  • Jang, Jong-Ho;Jang, Jae-Bong;Yoon, Jong-Kee;Kim, Yong-Ro;Kwan, Soo-Kil;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.103-106
    • /
    • 2003
  • Recently, it is increased on the concern for the reuse of waste concrete because of the shortage of natural aggregate and the increase of waste concrete. And recycled coarse aggregate is used variously, but the existing wet method producted recycled fine aggregate has problems like the high price facilities, the long time progress of the work and recycled fine aggregate of poor. The aim of this study is to investigate the possibility of the method of dry producted high qualities recycled fine aggregate. The results of this study have shown that the possibility of the method of dry is certificated as the qualities of recycled fine aggregate satisfied the KS and the compressive strength of mortar was similar to plain.

  • PDF

An Experimental Study on the Development of the Dry Manufactured Method for Recycled Fine Aggregate (재생잔골재의 건식제조방식 개발에 관한 실험적 연구)

  • 장종호;장재봉;윤종기;김용로;권수길;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.103.1-106
    • /
    • 2003
  • Recently, it is increased on the concern for the reuse of waste concrete because of the shortage of natural aggregate and the increase of waste concrete. And recycled coarse aggregate is used variously, but the existing wet method producted recycled fine aggregate has problems like the high price facilities, the long time progress of the work and recycled fine aggregate of poor. The aim of this study is to investigate the possibility of the method of dry producted high qualities recycled fine aggregate The results of this study have shown that the possibility of the method of dry is certificated as the dualities of recycled fine aggregate satisfied the KS and the compressive strength of mortar was similar to plain.

  • PDF

A Study on the application of the fine recycled concrete aggregate in the PHC piles (고품질 순환잔골재를 사용한 PHC파일의 적용 가능성 연구)

  • Shim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Tae-Gwang;Ma, Chang-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.345-348
    • /
    • 2006
  • Along with recent improvement of recycling technique, the quality of the recycled concrete aggregate have become very competitive to the natural concrete aggregate. Therefore, a practical use of the recycled concrete aggregate may be possible for structural members. Majority studies about the recycled concrete aggregate was emphasized a limitation of fundamental study concerned with a strength characteristics and durability of the recycled aggregate concrete. Therefore, for the extension of application of recycled concrete aggregate, this investigation verifies the strength characteristics and structural performances of PHC piles used with coarce and fine recycled concrete aggregate.

  • PDF