• Title/Summary/Keyword: Natural VOC

Search Result 48, Processing Time 0.025 seconds

A study on the characteristics of Natural VOC emissions from Oak trees in species (참나무 수종별 자연 VOC 배출특성에 관한 연구)

  • 김조천;김기준;임수길;임용재;홍지형;강창희
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.287-288
    • /
    • 2003
  • 식물은 자연 VOC(NVOC)의 가장 주요한 배출원이며, 대기중으로 유입되는 반응성이 강한 탄화수소의 배출원이다. 이러한 NVOC는 다소 늦게 알려진바 1970년대부터 그 중요성이 인식되기 시작했다(Dimitriades, 1981). 전 세계적으로는 NVOC의 배출량이 인위적인 것의 약 7배 정도에 이를 것으로 추정되고 있다. 특히, 우리나라의 경우는 전 국토의 65%가 산림으로 이루어져 있어 전국적인 규모로 볼때 NVOC의 양이 인위적인 VOC의 양을 휠씬 초과할 것이라고 판단된다. 그럼에도 불구하고 국내에서는 NVOC에 대한 정량적인 배출량 산출이 거의 없어 배출량 산정에 어려움이 많고, 외국 자료를 인용한 배출량 산출로 인해 자료의 신뢰성에도 논란의 여지가 많았다. (중략)

  • PDF

VOC/HAPs Emission Characteristics & Adsorption Evaluation for Paint Products in Busan Area (부산지역 페인트제조시설의 VOC/HAPs 배출특성 및 흡착능 평가)

  • Song, Bok-Joo;Lee, Seung-Min;Cho, Gab-Je;Cho, Jeong-Gu;You, Pyung-Jong;Kim, Gi-Gon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.316-325
    • /
    • 2012
  • In this study, we suggested adequate control technology by analyzing emission process and main chemical of VOC/HAPs generated from four paint factories in Busan area. And we estimated whether Kapok fiber, which is a natural material, can be commercially used for an absorbent by testing adsorption ability. As a result of this sturdy, above 60% of VOC/HAPs was volatilized and dispersed inside the working place without conducting control system of facilities during manufacturing paints. Concentration profile of VOC/HAPs, which is volatile naturally outside the factories, is surveyed above 70% at Toluene, Ethylbenzene, and Xylene. And a result of evaluation of odor attribution level about the component whose Odor Threshold is known, it is estimated that major cause material of A, B, C factories is Toluene and that of D factory is m/p-Xylene. And that result presented design arguments such as facilities specifications, activated carbon filling volume, and replace cycle of activated carbon as control technology. Also, that result presented emission process improvement such as adsorption of central-controlled ventilation device, installation of inlet flenge, and potable cleaning process. The rate of pollutant adsorption of Kapok fiber, which is natural material, is indicated about 91.9%, 66.7%. That result validated the possibility as replacement of activated carbon.

A Study on Behavior Characteristics of Volatile Organic Compound Caused by Ventilation in a Room (통풍에 의한 휘발성 유기화합물의 실내 거동 특성에 대한 연구)

  • Kim, Jang-Woo;Chung, Jin-Do
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1011-1016
    • /
    • 2006
  • Recently, volatile organic compound(VOC) has been noted as a main cause of air pollution. VOC, with its toxic and offensive odor, is hazardous to health. Furthermore indoor, underground and hish-rise buildings are preferable living spaces. People spend more than 80% of the day indoor, so indoor air pollution is a matter of importance. In Korea, from 2004, 10 types of indoor pollutants in public facilities have been identified. However, there is no standard for individual VOC, so the regulation has not yet effectively been carried out. In this study, we have studied on the diffusion of Benzene in a room using a numerical analysis for various air-controlled conditions consisted of door, window and ventilation system. This study investigates spatial concentration distribution and time-history of room-averaged benzene concentration for several cases. The results of this study show that when the room is ventilated by a small fan only for 30 minutes, the average concentration of benzene is decreased a very little, thus the impact to human body would be serious compared to the case of natural ventilation by window and door, In the case of natural ventilation by window and door, if the wind speed is higher than 0.5m/s, it takes small than 4 minutes for benzene to spread to the target concentration of $1.2mg/m^3$.

Characteristics of Volatile Organic Compounds and Aldehydes Emission from Yellow poplar (Liriodendron tulipifera L.) (백합나무 판재의 VOCs 및 Aldehydes 방출특성)

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.357-366
    • /
    • 2014
  • Based on fundamental properties and machining characteristics of Yellow poplar (Liriodendron tulipifera L.), it has well performance on machinability or workability, drying, and fine surface. Additionally, yellow poplar is light weight and has bright color with high performance of bending processing, so it could be used for furniture or artworks materials and wood-based panel materials. Recently, public attention has been focused on indoor air quality, and Ministry of environment drift more tight regulation on indoor air quality for an apartment house and public facility with the times. Construction materials has been assessed emission of volatile organic compounds (VOCs) and formaldehyde according to law (No.10789), so yellow poplar is also needed to assess these emission characteristics. Emission of VOC and aldehyde compounds from dry and green wood condition of yellow poplar were investigated with KS M 1998:2009. Based on results, more than 30 compounds were detected from yellow poplar, and lower NVOC (natural VOC) were emitted than AVOC (Anthropogenic VOC) and OVOC (other VOC). Formaldehyde emission was lower than $5{\mu}g/m^3$ and acetaldehyde, ketone, and propionaldehyde were detected from yellow poplar. From dry yellow poplar, m-Tolualdehyde ($33.6{\mu}g/m^3$) was additionally detected while no detection of propionaldehyde. After drying process, amount of ketone emission increased significantly. The unique smell of yellow poplar may not only come from emission of acetaldehyde and propionaldehyde.

Development of a Novel Sampling Technique for Natureal VOC Emissions

  • Kim, Jo-Chun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.61-70
    • /
    • 2001
  • In recent years there have been growing interests in the potential environmental effects of global climate change. Of specific interests is the role that climate change may play in altering natural volatile organic compound.(NVOC) emissions from trees and the subsequent impact of this perturbation on air quality and ozone formation. A novel vegetation enclosure chamber method was designed and constructed of Tedlar in order to estimate more accurate and precise NVOC emission rates of either small whole plants or the branches of large trees. The enclosure chamber was initially tested in the laboratory and also successfully evaluated in the field. Overall precision for this enclosure was estimated as RSD<10%(n=9). The overall errors associated with the enclosure method in a laboratory system might be relatively small (say<$\pm$15%); however, they might be rather large(say$\pm$40%) in a field-based system. Two consecutive samples were collected on each sampling day from the two pine species during the test period. Slash pine studies showed that the absolute percentage difference between the first and second samples varied from 0.33 to 29%. The percent differences between consecutive emission for loblolly pines varied from 0.74 to 24.2%.

  • PDF

Interlaboratory Study of Sampling and Analysis Techniques for Ambient VOCs under Field Conditions (현장중심의 동시측정을 통한 환경대기 중 휘발성유기화합물의 측정방식 비교 연구)

  • 김기현;김조천;이강웅;허귀석;이병규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.685-691
    • /
    • 2000
  • In order to provide basis for an accurate concentration determination of volatile organic compounds(VOCs) in air, four different institutions participated in simultaneous measurements of several VOC species under the experimental scheme of the Measurement and Analysis Division(MAD) of the Korea Society for Atmospheric Environment(KOSAE). Two types of experiments were undertaken by collecting and analyzing ambient air samples from the 7th floor of Natural Science Building, Han Tang University during two day periods of the late May 1998. The first typer of experiment was conducted as five consecutive experiments at 2-hour intervals by two institutions. On the other hand. the second type of experiment was performed as two -10hr sampling by three different institutions. The data obtained from different type of experiments were examined using various statistical approaches. In general, the results of these experiments indicated that the VOC data produced by a number of Korean institutions be fairly agreeable.

  • PDF

Characteristics of Volatile Organic Compounds Emitted from Wood-based Panels (목질제품에서 방출되는 휘발성 유기화합물 특성 연구)

  • Park, Hyun-Ju;Son, Youn-Suk;Lim, Bo-A;Kim, Jo-Chun;Park, Sang-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.616-623
    • /
    • 2010
  • Recently, interests in indoor air quality (IAQ) have been increased; however, a number of researchers have mainly focused on anthropogenic volatile organic compounds (AVOC) emitted from building materials. Therefore, the properties of natural VOC (NVOC) and anthropogenic VOC (AVOC) emitted from wood-based panels was investigated in this work. VOCs emitted from these panels were sampled through Tenax TA/Cabotrap and analyzed by GC-MS and GC-FID. Comparisons were made concerning TVOC, NVOC, and composition ratios of NVOC. It was revealed that TVOC emission rates of midium density fiber (MDF) were the highest. Besides, it was found that emissions of NVOC from wood-based panels were much higher than those of anthropogenic AVOC except for plywood of Oceania timber. It was also observed that the composition ratio of NVOC emitted from plywood of Pinus radiata was the highest as 65% of TVOC. Major NVOC components were monoterpene compounds such as $\alpha$-pinene, $\beta$-pinene, d-limonene, camphene and $\alpha$-terpinene. It was concluded that the composition rates of VOCs emitted from building materials were clearly different according to the raw materials and manufacturing methods.

VOCs Emission Characteristics of Coating Materials for Wood Finishing (목재용 마감도료의 휘발성유기화합물 방출특성)

  • Park, Sang-Bum;Lee, Min;Lee, Sang-Min;Kang, Yeong-Seok
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • In order to prevent decay, distortion, bending, twist on wood products such as wooden furnitures, variety of coating materials were developed and used so far. The coating materials for wood finishing can be synthesized by natural resource or petroleum. However, these coating materials can cause contamination of indoor air quality due to emission of volatile organic compounds (VOCs). In this study, commercialized coating materials for wood finishing such as varnish, coat, and stain were evaluated on emission characteristics of VOCs. Among the varnish, eco-friendly products had about 15~46% lower TVOC emission ($1,042{\mu}g/m^2h{\sim}3,257{\mu}g/m^2h$, respectively, than typical product ($7,100{\mu}g/m^2h$). Natural resource based coating material showed lowest TVOC emission level. However, one of natural resource based waterborne stain showed higher TVOC emission level because waterborne stain already contained higher amount of natural VOC. Oil-based stain might not be suitable for indoor use on interior wall and furniture due to exceed amount of TVOC. Based on results, natural resource based coat or waterborne stain are recommenced to use on wood products.

Study on Natural VOC Emission Rates and Characteristics Emitted from Larix Leptoleis (Sieb. et Zucc.) Gordon (낙엽송으로부터 배출되는 자연 VOC 배출속도 및 배출특성 연구)

  • Kim, Ki-Joon;Kim, Jo-Chun;Lim, Jun-Ho;SunWoo, Young;Park, Hyun-Ju;Cho, Kyu-Tak
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.151-158
    • /
    • 2007
  • In order to investigate the compositions and the emission rates of monoterpenes emitted from coniferous trees, those from Larix leptoleis (Sieb, et Zucc.) Gordon were measured. In spring and summer, the major monoterpenes were ${\alpha}-terpinene,\;{\alpha}-pinene$, myrcene; however, ${\alpha}-pinene\;and\;{\alpha}-terpinene$ were most abundant in fall. The total mean monoterpene emission rates were $0.455\;({\mu}gC/gdw/hr)$ during the whole period. The higher monoterpene emission rates were found in fall compared to those in spring and summer. In addition, the slopes (${\beta}\;value$) between emission rate and temperature were two times lower in fall than those in spring and summer. It was also found that Larix leptoleis (Sieb. et Zucc.) Cordon had lower monoterpene emission rates than P. densiflora and P. rigida.

대기압의 변화에 따른 휘발성 오염물질의 토양에서 대기로의 거동

  • Choi Ji-Won;Smith James A.;Hwang Gyeong-Yeop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.114-116
    • /
    • 2005
  • Natural attenuation has been actively studied and often selected as final clean-up process in remediation of contaminated ground-water and soil for the last decade. Accordingly, understanding of natural processes affecting the fate and transport of contaminants in the subsurface becomes important for a success of implementation of the natural remediation strategy, Contaminant advection and diffusion processes in the unsaturated zone are naturally related to environmental changes in the atmosphere. The atmospheric pressure changes affecting the transport of contaminants in the subsurface are investigated in this study. Moisture content, trichloroethylene (TCE) concentration, temperature, and pressure variations in the subsurface were measured for the July, August, November, and December 2001 at Picatinny Arsenal, New Jersey. These data were used for a one-phase flow and one-component transport model in simulating the soil-gas flow and accordingly the TCE transport in the subsurface in accordance with the atmosphere pressure variations at the surface. The soil-gas velocities during the sampling periods varied with a magnitude of $10^{-6}\;to\;10^{-7}\;m\;s^{-1}$ at land surface. The TCE advection fluxes at land surface were several orders of magnitude smaller than the TCE diffusion fluxes. A sensitivy analysis indicated that advection fluxes were more sensitive to changes in geo-environmental conditions compared to diffusion fluxes. Of all the parameters investigated in this study, moisture content has the most significant effect on TCE advection and diffusion fluxes.

  • PDF