• Title/Summary/Keyword: Natural Terrain

Search Result 189, Processing Time 0.052 seconds

A SPATIAL PREDICTION THEORY FOR LONG-TERM FADING IN MOBILE RADIO COMMUNICATIONS

  • Yoo, Seong-Mo
    • ETRI Journal
    • /
    • v.15 no.3
    • /
    • pp.27-34
    • /
    • 1994
  • There have been traditional approaches to model radio propagation path loss mechanism both theoretically ad empirically. Theoretical approach is simple to explain and effective in certain cases. Empirical approach accommodates the terrain configuration and distance between base station and mobile unit along the propagation path only. In other words, it does not accommodate natural terrain configuration over a specific area. In this paper, we propose a spatial prediction technique for the mobile radio propagation path loss accommodating complete natural terrain configuration over a specific area. Statistical uncertainty analysis is also considered.

  • PDF

Terrain Classification for Road Design (도로 설계 지형 구분)

  • Kim, Yong-Seok;Cho, Won-Bum;Kim, Jin-Kug
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.221-229
    • /
    • 2011
  • Road design needs to ensure the economic justification and the preservation of nature by adapting road alignment to the natural terrain. Though current road design guideline only defines a flat and a mountainous terrain, classification including rolling terrain should be needed while considering the fact that about 25.8% of our land can be classified as rolling and the road design guideline of developed countries such as United States and Australia has a terrain classification including rolling in order to take a deep consideration on the natural environment. The study attempts to draw a criterion to classify the assumed three individual terrains in a quantitative way by using a index like the undulation of the original ground profile. The study carried out a case study based on a conceptual frame developed in the study as an approach to differentiate each terrain. As a result, the study suggests a criterion in that a flat terrain has less than 40 meters in the difference between the highest and the lowest point of original ground from 40 to 60 meters for rolling terrain, and greater than 60 meters for mountainous respectively.

Creation of Natural Terrain by Erosion Simulation (자연스러운 지형 생성을 위한 침식 시뮬레이션)

  • Han, Yeong-Deok
    • Journal of Korea Game Society
    • /
    • v.15 no.6
    • /
    • pp.171-182
    • /
    • 2015
  • Existing hydraulic terrain erosion simulations mainly focus on small scale terrain deformations. In this paper, we propose a simulation method combining hydraulic terrain erosion and thermal erosion, by which a natural large scale terrain of mountainous regions with river networks can be created. For water movement we use the pipe model of shallow water simulation, and for the easy formation of watercourse we use velocity dependent erosion, also we apply thermal erosion for the formation of V-form slopes in the vicinity of stream lines. As a result, we can obtain good natural shaped terrains for certain ranges of $K_c$(sediment capacity constant) and $K_v$(velocity dependent erosion strength) values. Also we present improved thermal erosion method, and suggest a way to avoid problems caused by large $K_c$value.

A Study on Computing Pit Excavation Volume by Terrain Surface Approximation (지형곡면해석에 의한 토공량 계산에 관한 연구)

  • 문두열;정범석
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.37-43
    • /
    • 2002
  • The calculation of earthwork plays a major role in the plan or design phase of many civil engineering projects, such as seashore reclamation; and thus, it has become very important to improve upon its accuracy. There have been common drawbacks to earlier methods of ground profiling, such as dialing with sharp corners or the grid points of any tow straight lines. In this paper, we prepose an algorithm for finding a terrain surface using the natural boundary conditions and the both direction spline method, which interpolates the given three-dimensional data by using spline. As a result of this study, the algorithm of the proposed two methods to estimate pit excavation volume should provide a better accuracy than Spot height, Chambers, Chen, or Lin method. Also, the mathematical model mentioned offers maximum accuracy in estimating the volume of a pit excavation.

Terrain-Alignment Linked Design (지형 선형 연결 설계)

  • Kim, Yong Seok
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.191-198
    • /
    • 2014
  • PURPOSES : Safety consciousness can be the first factor to hinder the acceptance of design alternative, which moderates the applied design criteria in order to adapt the road to the natural terrain condition. METHODS : The method which enables to check the safety of design alternative by using design consistency concept is suggested. The method is based on the linked or interactive analysis between terrain and road alignment. Real design example is considered as a guide how to apply the method and the analysis result is discussed with the future research. RESULTS : Suggested method can be used for designers as a tool to review their design outputs can be safe as much as the original design. So, designers have the more objective judgement on their designs and have the confidence on their designs. CONCLUSIONS : The method is expected to be used as a tool to see the safety consciousness in an objective view, so any possible conflicts between designers and design-related personnels caused by the terrain-oriented design can be solved.

Slope and Roughness Extraction Method from Terrain Elevation Maps (지형 고도 맵으로부터 기울기와 거칠기 추출 방법)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;So, Myung-Ok;Shin, Ok-Keun;Chae, Jeong-Sook;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.909-915
    • /
    • 2008
  • Recently, the interests in the development and application of unmaned robots are increasing in various fields including surveillance and reconnaissance, planet exploration, and disaster relief. Unmaned robots are usually controlled from distance using radio communications but they should be equipped with an autonomous travelling function to cope with unexpected terrains and obstacles. This means that they should be able to evaluate terrain's characteristics quantitatively using mounted sensors so as to traverse harsh natural terrains autonomously. For this purpose, this paper presents a method for extracting terrain information, that is, slope and roughness from elevation maps as a prior step of traversability analysis. Slope is extracted using the curve fitting based on the least squares method and roughness using three metrics and their weighted average. The effectiveness of the proposed method is verified on both a fractal map and the world model map of a real terrain.

Terrain Information Extraction for Traversability Analysis of Unmaned Robots (무인로봇의 주행성 분석을 위한 지형정보 추출)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;So, Myung-Ok;Chae, Jeong-Sook;Lee, Young-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.233-236
    • /
    • 2008
  • Recently, the development and application of unmaned robots are increasing in various fields including surveillance and reconnaissance, planet exploration and disaster relief. Unmaned robots are usually controlled from distance using radio communications but they should be equipped with autonomous travelling function to cope with unexpected terrains and obstacles. This means that unmanned robots should be able to evaluate terrain's characteristics quantitatively using mounted sensors so as to traverse harsh natural terrains autonomously. For this purpose, this paper presents an algorithm for extracting terrain information from elevation maps as an early step of traversability analysis. Slope and roughness information are extracted from a world terrain map based on least squares method and fractal theory, respectively. The effectiveness of the proposed algorithm is verified on both fractal and real terrain maps.

  • PDF

Classification of the vegetated terrain using polarimetric SAR processing techniques

  • Park Sang-Eun;Moon Wooil M
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • Classification of Earth natural components within a full polarimetric SAR image is one of the most important applications of radar polarimetry in remote sensing. In this paper, the unsupervised classification algorithms based on the combined use of the polarimetric processing technique such as the target decomposition and statistical complex Wishart classification method are evaluated and applied to vegetated terrain in Jeju volcanic island.

  • PDF

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Geological feasibility and slope stability analysis under GIS environment for rail route alignment

  • Jain, Kamal;Kumar, Anand
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.186-188
    • /
    • 2003
  • Rail Route Alignment in hilly terrain is a difficult task to implement as several natural constraints poses threat to the safety and stability of the alignment. The conventional methods followed to find out the final location survey or the feasibility analysis for alignment is time taking consuming. Some times, due to inaccessibility of the terrain it becomes impossible to carry out such works. The construction works in hilly terrain, which are associated with the proposed alignment, are not same as carried out in plane areas due to a vast contrast between the two areas. Different geological structures such as faults, thrusts, synclines and anticlines are a big problem to carry out normal construction practices. Thus for a safe and stable railway route in the unstable hilly areas, it is required to carry out the feasibility analysis of the proposed alignment to assist the policy makers for a successful implementation of the alignment. In the present work Remote Sensing and GIS has been successfully used to carry out geological feasibility and slope stability analysis for rail route alignment work.

  • PDF