• Title/Summary/Keyword: Natural Shape Function

Search Result 215, Processing Time 0.028 seconds

Size Optimization of a Rod Using Frequency Response Functions of Substructures (부분 구조의 주파수 응답 함수를 이용한 봉의 치수 최적화)

  • Yoon, Hong Geun;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.905-913
    • /
    • 2017
  • In this work, a method of size optimization is proposed to maximize the natural frequency of a rod that consists of a hidden shape in one part and an exposed shape in the other. The frequency response function of a rod composed of two parts is predicted by using the frequency response functions of each of the parts instead of the shapes of the parts. The mass and stiffness matrices of the rod are obtained by using the mass and stiffness matrices of the equivalent vibration systems, which are obtained by applying the experimental modal analysis method to the frequency response functions of the parts. Through several numerical examples, the frequency response function obtained by using the proposed method is compared with that of a rod to validate the prediction method based on equivalent vibration systems. A size optimization problem is formulated for maximizing the first natural frequency of a combined rod, which is replaced with an equivalent vibration system, and a rod structure is optimized by using an optimization algorithm.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

A Study on the Ponds of the Korean Traditional Temples (한국 전통사찰의 인공지 연구)

  • 권태철;홍광표
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.80-94
    • /
    • 1999
  • The purpose of this study is to analyze and interpret the ponds appeared in the Korean traditional temples. Summarized findings are as follows: First, it appeared that the location of ponds of the Korean traditional temples is, in general, in both the entry space and transitional space of temple. And it is considered that such configurations of the location of ponds were done intentionally in order that the ponds should have a significance as same as the concept that a natural mountain stream separates the sacred place and the secular world. Second, since the size of the ponds appeared in the temples are considered to be what is transformed from the original one, it is hard to understand the real size. However, it is judged that since ponds we see at present played an element of the total space of a temple it is deemed that no significant change of the size of ponds have happened if the size of the structure a temple itself has ever changed. Third, it appeared that the forms of the temple's ponds are diversified in a square, oval, egg-shaped one, round shape(circle), natural shape, etc. and it is identified that most of the ponds inspected for this study appeared to be in shapes of an oval, egg-shaped one, and round shape which take a typical curve. Fourth, regarding the temples whose origins are from the Baekje dynasty or Shilla dynasty among the objects of this case study, there appear some uniform styles for each temple respectively. For example, in both the Junglim Temple's twin pond(定林寺 雙池) and the Mireuk Temple's twin pond(彌勒寺 雙池) which were built in the Baekje dynasty appears a twin-pond in a square shape, and in the Bulkuk temple(佛國寺), Haein temple(海印寺), Tongdo temple(通度寺), etc. which were built in the Silla dynasty appears the ponds in an egg-shape one. Fifth, regarding the function of the ponds appeared in the temples, the ponds are characterized with a lotus pond(蓮池), reflecting pond(影池), and pond complex(蓮 . 影池). In consideration of the 20 ponds in the 15 places of this study's object, there are 8 lotus ponds(蓮池), 6 reflecting ponds(影池), and 6 ponds complex(蓮 . 影池).

  • PDF

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Time-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 시간 영역 해석)

  • Kim, Ki-Bum;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.224-231
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the time domain. The equation of motion, an integro-differential equation, was derived following the fashion of Cummins (1962), and its coefficients including the retardation function were obtained using the numerical solution of Lee (2012). The equation was solved numerically, and the experiment was also carried out in the CNU flume. Using our numerical and experimental results, the natural frequency was defined as its average value given by the motion data excluding those of the initial stage. Our results were then compared with those of the existing investigations such as Maskell and Ursell (1970), Ito (1977) and Yeung (1982) as well as the newly obtained results of Lee (2012). Comparison showed that the natural frequency obtained here agrees well with that of Lee (2012), which was found through the frequency domain analysis. It was also shown that the approximation of heaving motion by a damped harmonic oscillation, which was regarded as suitable by most previous investigators, is not physically suitable for the reason that can be clearly shown through comparing the shape of MCFRs(Modulus of Complex Frequency Response). Furthermore, we found that although the previous approximations yield the damping ratio significantly different from our result the magnitude of natural frequency is not much different from our result.

Experimental Modal Analysis for 3-D Vibration Characteristics of Radial Tire for Passenger Car under Free-Suspension (실험모드해석에 의한 승용차용 레디얼 타이어의 3차원 진동특성)

  • 김용우;남진영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.227-236
    • /
    • 2002
  • We have performed two kinds of experimental modal analyses fur a radial tire for passenger car under free-suspension. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained the three-dimensional natural modes, which makes it possible to grasp the features of the modes and to classify the vibrational modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the first and the second experimental analyses we have identified the cavity resonance frequency and its three-dimensional mode shape.

Laminopathies; Mutations on single gene and various human genetic diseases

  • Kang, So-mi;Yoon, Min-Ho;Park, Bum-Joon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.327-337
    • /
    • 2018
  • Lamin A and its alternative splicing product Lamin C are the key intermediate filaments (IFs) of the inner nuclear membrane intermediate filament. Lamin A/C forms the inner nuclear mesh with Lamin B and works as a frame with a nuclear shape. In addition to supporting the function of nucleus, nuclear lamins perform important roles such as holding the nuclear pore complex and chromatin. However, mutations on the Lamin A or Lamin B related proteins induce various types of human genetic disorders and diseases including premature aging syndromes, muscular dystrophy, lipodystrophy and neuropathy. In this review, we briefly overview the relevance of genetic mutations of Lamin A, human disorders and laminopathies. We also discuss a mouse model for genetic diseases. Finally, we describe the current treatment for laminopathies.

A Study on the Free Vibration of the Helically Curved Members (나선형(螺旋形) 곡선부재(曲線部材)의 자유진동(自由振動)에 관한 연구(研究))

  • Yhim, Sung Soon;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.227-238
    • /
    • 1988
  • The curved structures in space, such as multi-level inter-changes, ramped structures, and circular curved structures etc., are modelled as helically curved members with constant helix angle in this study. Equilibrium equations are derived, considering the geometrical properties and initial curvatures of helix. Modal equations of the simply supported helically curved members which can calculate the normalized natural frequencies are derived from these equations by assuming the modal shape function. These equations are used to calculate the normalized natural frequencies of the simply supported helically curved members and verify the distribution of the natural frequencies of them.

  • PDF

Cognitive Shape Decomposition (인지적 형태 분할)

  • 김호성;박규호
    • Korean Journal of Cognitive Science
    • /
    • v.1 no.2
    • /
    • pp.317-346
    • /
    • 1989
  • A congnitive shape decomposition method that agrees with human intuition is proposed for the conceptual recognition from sillouettes of objects. Descriptions specifying the structure of shape in terms of meaningful parts and relations have cognitive power and anthropomorphism. In general, man-made objects have a lot of collinear lines and regularity. For the cognitive decomposition of man-made objects, many heuristic rules based on the cognitive experimentation are applied on the context of collinerarity and regularity. The cognitive shape decomposition for the natural shape is carried out by analyzing the possible configuraitions of vertices and line segments for one concave vertex. A cost function for the configuation is designed by weighted sum of five criteria such as, the length of split line segment, the number of split line segments at concave vertex, the proximity of concave vertex, and the correspondence of vertices. These criteria are vased on the property of human perception such as proximtiy, symmetry, and simplicity. The most promising vertex os selected among three set of visible vertices by evaluating the cost function. A number of experiments conducted on the different types of shapes shows that the results correspond with human intuition.

Free Vibration Analysis of Orthotropic Triangular Plates with Simplified Series Function (단순급수함수를 이용한 직교이방성 복합재료 삼각판의 자유진동해석)

  • 이영신;정대근;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.849-863
    • /
    • 1992
  • A very simple and computationally efficient numerical method is developed for the free vibration of isotropic and orthotropic composite triangular plates. A set of two-dimensional simple series functions is used as an admissible displacement functions in the Rayleigh-Ritz method to obtain the natural frequencies, nodal patterns and mode shapes for the plates. From the prescribed starting function satisfying only the geometric boundary conditions, the higher terms in the series functions are constructed with adding order of polynominal. Natural frequencies, nodal patterns and mode shapes are obtained for right triangular plates with three different support conditions. The obtained numerical results are presented, and the isotropic and some orthotropic cases are verified with other numerical methods in the liternature.

Topology, Shape and Sizing Optimization of the Jig Supporting High Voltage Pothead (고전압 장비 지그의 동특성에 대한 위상, 형상 및 치수 최적화)

  • Choi, Bong-Kyun;Lee, Jae-Hwan;Kim, Young-Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • In the electric power supplying industry, outdoor sealing end (pothead) is used and sometimes it is necessary to check the seismic qualification analysis or test which is intended to demonstrate that the equipment have adequate integrity to withstand stress of the specified seismic event and still performs their function. And since the pothead is mounted on the supporting jig, the avoidance of resonance between the pothead and jig is required. In order to design jig, three types of optimization are performed to get the minimum weight while satisfying the natural frequency constraint using ANSYS. Optimal array, position and thickness of truss members of the jig are obtained through topology, shape and sizing optimization process, respectively. And seismic analysis of the pothead on the jig for given RRS acceleration computes the displacement and stress of the pothead which shows the safety of the pothead. The obtained natural frequency, mass, and member thickness of the jig are compared with those of the reference jig which was used for seismic experimental test. The numerical results of the jig in the research is more optimized than the jig used in the experimental test.