• Title/Summary/Keyword: Natural Radioactivity measurement System

Search Result 7, Processing Time 0.022 seconds

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

Development of Remote Data Analysis System for the Joint Use of Equipments (분석기기지원을 위한 원격 데이터 분석 시스템 개발)

  • 최인식
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.3
    • /
    • pp.94-106
    • /
    • 1999
  • In Korea Basic Science Institute(KBSI) the remote data analysis system is developed for the joint use of advanced equipments. This system enables the researchers to access the datas which are produced at KBSI and analyse them by Java program on the Web,. Except Web browser such as Internet Explorer or Netscape Navigator no additional softwares are required for analysing data. We have developed remote data analysis systems for five major equipments which KBSI supports for the researchers, The systems which are developed are those for NMR spectrometer High Reso-lution Tandem mass Spectrometer Microscopic Imaging System DNA Sequencer and Natural Ra-dioactivity Measruement System, These programs work on any computer platform and any operat-ing system only if the internet is available. This remote data analysis system will be served as a part of Collaboratory the remote collaborative system.

  • PDF

Measurement of MDA of Soil Samples Using Unsuppression System and Compton Suppression of Environmental Radioactivity in Processing Technology (환경 방사능 처리기술에서의 Compton suppression 및 Unsuppression system을 이용한 토양시료의 MDA 측정)

  • Kang, Suman;Im, Inchul;Lee, Jaeseung;Jang, Eunsung;Lee, Mihyeon;Kwon, Kyungtae;Kim, Changtae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.293-299
    • /
    • 2014
  • Compton suppression device is a device by using the Compton scattering reaction and suppress the Compton continuum portion of the spectrum, so can be made more clear analysis of gamma ray peak in the Compton continuum region. Measurements above background occurs or, radioactivity counts of radioactivity concentration value of $^{40}K$ nuclides $^{137}Cs$ and natural radioactivity artificial radioactivity detected from the surface soil sample, unwanted non-target analysis and interference peak who dotted line you know the calibration of the measurement energy is allowed to apply the (Compton suppression) non-suppressed spectrum inhibition spectrum and (Compton Unsuppression) the background to the measured value of the activity concentration value of the standard-ray source is detected relative to the peak of By measuring according to the different distances cause $^{137}Cs$, and comparative analysis of the Monte Carlo simulation, in order to obtain a detection capability for efficient, looking at the Compton inhibitor, as the CSF value increases with increase in the distance, more It was found that the background due to Compton continuum of the measured spectrum suppression mode Compton unrestrained mode can know that the Compton suppression many were made, using a $^{137}Cs$ is reduced.

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.

Evaluation of Radioactive Stack Air Effluents from the Advanced Fuel Science Building at KAERI (한국원자력연구원 새빛연료과학동 굴뚝방출 방사능 평가)

  • Chang, S.Y.;Kim, B.H.
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.121-126
    • /
    • 2008
  • Radioactivities of the stack air effluents from the Advance Fuel Science Building (AFSB) at KAERI have been investigated and evaluated. In this AFSB, nuclear fuels for the HANARO research reactor have been fabricated and the advanced nuclear fuels have been studied. A stack air monitoring system has been continuously operating to monitor the stack air effluents from the facility to protect the environment. As the results of the periodical radioactivity measurement and both the gamma and alpha spectrometry for the millipore filters taken from the stack air monitor from January until March 2008, a trace amount of primordial $^{40}K$ and the short-lived decay products of natural borne $^{222}Rn$ and $^{220}Rn$ have been detected. However, the radioactivities have rapidly decayed to the level below the Minimum Detectable Activity (MDA) of the counting system. Therefore, it was evaluated that no uranium isotopes have been released to the atmosphere from the stack of the AFSB at KAERI.

Minimum Detectable Radioactivity Concentration of Atmospheric Particulate Measurement System for Nuclear Test Monitoring (핵활동 감시를 위한 대기 입자 측정시스템의 최소검출 방사능 농도 결정)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Shin, Jang-Soo;Kwack, Eun-Ho;Choi, Jong-Seo
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 1997
  • Recently, the conclusion of Comprehensive Test Ban Treaty(CTBT) is globally constructing a network system for nuclear test monitoring. The radionuclide experts of the Conference on Disarmament recommended that the detection of nuclear debris in the atmosphere was an essential factor of nuclear test monitoring and proposed the technical requirements. Based on those requirements, atmospheric radionuclide monitoring system to detect nuclear debris generated from the nuclear explosion test was composed. The system is comprised of high volume air sampler(HVAS), filter paper presser and high purity germanium detector(HPGe). Minimum detectable concentrations(MDCs) of the key nuclides requiring in CTBT monitoring strategies are determined by considering of decay time, counting time and flow rate of the high volume air sampler for the rapid explosion and the optimum measurement condition. The results were selected $10{\pm}$2h, $20{\pm}$2h and $850{\pm}50m^3$/h as parameters, respectively. The relation between the natural air-borne radionuclide concentration of $^{212}Pb$ and MDC were calculated which gave effect in the Compton continuum baseline due to those nuclides in the gamma-ray spectroscopy. These results can be used as an actually tool in the CTBT monitoring strategies.

  • PDF

Elementary School in Gwangju Gwangsan Radon gas Density Measurement (광주광역시 광산구 소재 초등학교 라돈가스 농도 계측)

  • Ahn, Byungju;Oh, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • Radium is rock or soil of crust or uranium of building materials after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. In this study, the air in the elementary school classroom nongdoeul tonkatsu place of measured values were compared using the calculated annual internal radiation exposure. La tonkatsu exposure measured in primary school classroom at least five schools when you close the windows in the average floor 0.56mSv 2 floors ground floor windows when opened 0.384mSv 048mSv 3 floors, 2 floor levels of the same three layers 0.31mSv 0.296mSv the human exposure to radon and radiation on the first floor of 3 floors above ground in a lot of exposure was moderate. When you close the window from the first floor up 0.384mSv 056mSv 3 floors with a minimum annual radiation exposure due to natural radiation in the 16 to 23.3 percent minimum 2.4mSv accounted for. When I opened the window to the maximum annual radiation exposure 2.4mSv 0.296mSv 0.31mSv least a minimum of 12.3 to 12.91% accounted for Results suggest that more than five chodeunghakgyoeun La tonkatsu domestic radon measurements conducted below regulatory requirements and internal exposure has also fall within the normal range. People The less the radiation exposure to the human body because it reduces the impact in the classroom in elementary school vent windows often reduced to the maximum radon concentration in the air, if called tonkatsu be able to reduce radiation exposure for the immune system is weak and elementary will be helpful to experiment more in the future for the school authorities called tonkatsu investigation is done to him if the action to establish a more secure school building facilities is thought would be helpful.