• 제목/요약/키워드: Natural Motion

검색결과 1,206건 처리시간 0.027초

Polar-Natural Distance and Curve Reconstruction

  • Kim, Hyoung-Seok;Kim, Ho-Sook
    • International Journal of Contents
    • /
    • 제11권2호
    • /
    • pp.9-14
    • /
    • 2015
  • We propose a new distance measure between 2-dimensional points to provide a total order for an entire point set and to reflect the correct geometric meaning of the naturalness of the point ordering. In general, there is no total order for 2-dimensional point sets, so curve reconstruction algorithms do not solve the self-intersection problem because the distance used in the previous methods is the Euclidean distance. A natural distance based on Brownian motion was previously proposed to solve the self-intersection problem. However, the distance reflects the wrong geometric meaning of the naturalness. In this paper, we correct the disadvantage of the natural distance by introducing a polar-natural distance, and we also propose a new curve reconstruction algorithm that is based on the polar-natural distance. Our experiments show that the new distance adequately reflects the correct geometric meaning, so non-simple curve reconstruction can be solved.

THE BOUNDEDNESS OF SOLUTIONS FOR STOCHASTIC DIFFERENTIAL INCLUSIONS

  • Yun, Yong-Sik
    • 대한수학회보
    • /
    • 제40권1호
    • /
    • pp.159-165
    • /
    • 2003
  • We consider the stochastic differential inclusion of the form $dX_t\;\in\;\sigma(t,\;X_t)db_t+b(t,\;X_t)dt$, where $\sigma$, b are set-valued maps, B is a standard Brownian motion. We prove the boundedness of solutions under the assumption that $\sigma$ and b satisfy the local Lipschitz property and linear growth.

회전축 정렬불량을 고려한 유연회전디스크의 진동해석 (Vibration Analysis of a Flexible Spinning Disk Considering the effect of Misalignment)

  • 정진태;허진욱;최기영
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.952-959
    • /
    • 2002
  • The natural frequencies of a flexible spinning disk misaligned with the axis of rotation are studied in an analytic manner. The effects of misalignment on the natural frequency need to be investigated, because the misalignment between the axis of symmetry and the axis of relation cannot be avoided in the removable disks such as CD-R, CD-RW or DVD disks. Assuming that the in -plane displacements are in steady state and the out-of-plane displacement is in dynamic state, the equations of motion are derived for the misaligned spinning disk. After the exact solutions are obtained fur the steady -state in-plane displacements, they are plugged into the equation for the dynamic-state out-of-plane motion. The resultant equation is a linear equation for the out -of-plane displacement, which is discretized by the Galerkin method. Based on the discretized dquations, the effects of the misalignment are analyzed on the vibration characteristics of the spinning disk, i.e., the natural frequencies and the critical speed.

지반의 고유진동수에 따른 면진 원전 격납건물의 지진응답 특성 (Characteristics of Earthquake Responses of an Isolated Containment Building in Nuclear Power Plants According to Natural Frequency of Soil)

  • 이진호;김재관;홍기증
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.245-255
    • /
    • 2013
  • According to natural frequency of soil, characteristics of earthquake responses of an isolated containment building in nuclear power plants are examined. For this, earthquake response analysis of seismically isolated containment buildings in nuclear power plants is carried out by strictly considering soil-structure interactions. The structure and near-field soil are modeled by the finite element method while far-field soil by consistent transmitting boundary. The equation of motion of a soil-structure interaction system under incident seismic wave is derived. The derived equations of motion are solved to carry out earthquake analysis of a seismically isolated soil-structure system. Generally, the results of this analysis show that seismic isolation significantly reduces the responses of the soil-structure system. However, if the natural frequency of the soil is similar to that of the soil-structure system, the responses of the containment buildings in nuclear power plants rather increases due to interactions in the system.

슬관절 골관절염환자에서 도수 관절가동술이 통증, 관절가동범위, 신체기능과 균형능력에 미치는 효과 (The Effect of Manual Joint Mobilization on Pain, ROM, Body Function and Balance in Patients with Knee Osteoarthritis)

  • 이남용;권춘숙;송현승
    • 대한물리의학회지
    • /
    • 제10권4호
    • /
    • pp.91-99
    • /
    • 2015
  • PURPOSE: The purpose of this study was to investigate effect of the manual joint mobilization to the patients with knee osteoarthritis and to determine the effect of pain, range of motion, body function and balance after applying it. METHODS: The thirty participants who complained the knee pain were randomly assigned to control (Con) group (n=15) that received the general physical therapy and experimental (Exp) group (n=15) that received the applied the manual joint mobilization and the general physical therapy three times per week, 30 minutes per day for four weeks. It measured the visual analogue scale (VAS), the range of motion (ROM), body function (WOMAC) and balance (TUG). RESULTS: It showed the significantly different between the control group and experiment group in VAS, ROM and WOMAC. After 4 weeks, the experiment group was significantly different from other group in VAS, ROM and WOMAC. But the measurement of balance did not show the significantly difference within group and between groups. CONCLUSION: This results suggest that Manual joint mobilization was effective in pain, ROM, function in patient with knee osteoarthritis.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

탄성지지부가물(彈性支持附加物) 또는 집중질량(集中質量)을 갖는 보강판(補剛板)의 진동해석(振動解析) (Vibration Analysis of Stiffened Plates having a Resiliently Mounted or Concentrated Mass)

  • 한성용;김극천
    • 대한조선학회지
    • /
    • 제23권1호
    • /
    • pp.23-32
    • /
    • 1986
  • By virtue of an application of the receptance method, simplified formulae to calculate natural frequencies of stiffened plates having a resiliently mounted or concentrated mass are obtained. Some numerical results are compared with those based on Lagrange's equation of motion and with experimental results. For the problem formulation the stiffened plate is reduced to an equivalent orthotropic plate, a resiliently mounted mass to a spring-mass system, and mode shapes of the plate are assumed with comparison functions consisting of Euler beam functions. The proposed formulae give results in good conformity to both numerical results based on Lagrange's equation of motion and experimental results for in-phase modes of the coupled system. For out-of-phase modes the conformity is assured only in case that the natural frequency of the attached system is less than a half of that the stiffened plate. It is also found that a resiliently mounted mass having its own natural frequency of about two or more times that of the stiffened plate can be reduced to a concentrated mass with assurance of a few percent error in the frequency.

  • PDF

Free vibration analysis of tall buildings with outrigger-belt truss system

  • Malekinejad, Mohsen;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.89-107
    • /
    • 2011
  • In this paper a simple mathematical model is presented for estimating the natural frequencies and corresponding mode shapes of a tall building with outrigger-belt truss system. For this purposes an equivalent continuum system is analyzed in which a tall building structure is replaced by an idealized cantilever continuum beam representing the structural characteristics. The equivalent system is comprised of a cantilever shear beam in parallel to a cantilever flexural beam that is constrained by a rotational spring at outrigger-belt truss location. The mathematical modeling and the derivation of the equation of motion are given for the cantilevers with identically paralleled and rotational spring. The equation of motion and the associated boundary conditions are analytically obtained by using Hamilton's variational principle. After obtaining non-trivial solution of the eigensystem, the resulting is used to determine the natural frequencies and associated mode shapes of free vibration analysis. A numerical example for a 40 story tall building has been solved with proposed method and finite element method. The results of the proposed mathematical model have good adaptation with those obtained from finite element analysis. Proposed model is practically suitable for quick evaluations during the preliminary design stages.