• Title/Summary/Keyword: Natural Motion

Search Result 1,201, Processing Time 0.024 seconds

Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Half a Year Prospective Study- (노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -전향적 연구(Prospective Study)-)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • Objective: The aim of this study was to determine the peak torques of the knee and ankle joint and local stability of the lower extremity's joints, and muscle activation patterns of the lower extremity's muscles between fallers and non-fallers in the elderly women during walking. Method: Four elderly women (age: $74.5{\pm}5.2yrs.$; height: $152.1{\pm}5.6cm$; mass: $55.3{\pm}5.4kg$; preference walking speed: $1.19{\pm}0.06m/s$) who experienced falls within six months since experiment had been conducted (falls group) and thirty-six subjects ($74.2{\pm}3.09yrs.$; height: $153.6{\pm}4.9cm$; mass: $56.7{\pm}6.4kg$; preference walking speed: $1.24{\pm}0.10m/s$) who had no experience in falls (non-falls group) within this periods participated in this study. They were measured torque peaks of the knee and ankle joint using a Human Norm and while they were walking on a treadmill at their natural pace, kinematic variables and EMG signals were collected with using a 3-D motion capture system and a wireless EMG system, respectively. Lyapunov Exponent (LyE) was determined to observe the dynamic local stability of the lower extremity's joints, and muscles activation and their co-contraction index were also analysed from EMG signals. Hypotheses between falls and non-falls group were tested using paired t-test and Mann-Whitey. Level of significance was set at p<.05. Results: Local dynamic stability in the adduction-abduction movement of the knee joint was significantly lower in falling group than non-falling group (p<.05). Conclusion: In conclusion, muscles which act on the abduction-adduction movement of the knee joint need to be strengthened to prevent from potential falls during walking. However, a small number of samples for fallers make it difficult to generalize the results of this study.

3D Human Reconstruction from Video using Quantile Regression (분위 회귀 분석을 이용한 비디오로부터의 3차원 인체 복원)

  • Han, Jisoo;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.264-272
    • /
    • 2019
  • In this paper, we propose a 3D human body reconstruction and refinement method from the frames extracted from a video to obtain natural and smooth motion in temporal domain. Individual frames extracted from the video are fed into convolutional neural network to estimate the location of the joint and the silhouette of the human body. This is done by projecting the parameter-based 3D deformable model to 2D image and by estimating the value of the optimal parameters. If the reconstruction process for each frame is performed independently, temporal consistency of human pose and shape cannot be guaranteed, yielding an inaccurate result. To alleviate this problem, the proposed method analyzes and interpolates the principal component parameters of the 3D morphable model reconstructed from each individual frame. Experimental result shows that the erroneous frames are corrected and refined by utilizing the relation between the previous and the next frames to obtain the improved 3D human reconstruction result.

Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions

  • Soleimani-Javid, Zeinab;Arshid, Ehsan;Khorasani, Mohammad;Amir, Saeed;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.449-460
    • /
    • 2021
  • Flexoelectricity is an interesting materials' property that is more touchable in small scales. This property beside the sandwich structures placed in the center of scientists' attention due to their extraordinary effects on the mechanical properties. Furthermore, in the passage of decades, more elaborated sandwich structures took into consideration results from using honeycomb core. This kind of structure, inspiring from honeycomb core, provides more stiffness to weight ratio, which plays a crucial role in different industries. In this paper, based on the Love-Kirchhoff's hypothesis, Hamilton's principle, modified couple stress theory and Fourier series analytical method, equations of motion for a sandwich plate containing a honeycomb core integrated by two face-sheets have derived and solved analytically. The equations of both face sheets have derived by flexoelectricity consideration. Moreover, it should be noticed that the whole structure rests on the visco-Pasternak foundation. Conducting current research provided an acceptable and throughout study based on flexoelectricity to address the effect of materials' characteristics, length-scale parameter, aspect, and thickness ratios and boundary conditions on the natural frequency of honeycomb sandwich plates. Also, based on the presented figures and tables, there is a close agreement between previous studies and recent work. Due to the high ratio of strength to weight, current model analyzing is capable of taking into account for different vehicles' manufacturing in a high range of industries.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

Time-domain coupled analysis of curved floating bridge under wind and wave excitations

  • Jin, Chungkuk;Kim, MooHyun;Chung, Woo Chul;Kwon, Do-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.399-414
    • /
    • 2020
  • A floating bridge is an innovative solution for deep-water and long-distance crossing. This paper presents a curved floating bridge's dynamic behaviors under the wind, wave, and current loads. Since the present curved bridge need not have mooring lines, its deep-water application can be more straightforward than conventional straight floating bridges with mooring lines. We solve the coupled interaction among the bridge girders, pontoons, and columns in the time-domain and to consider various load combinations to evaluate each force's contribution to overall dynamic responses. Discrete pontoons are uniformly spaced, and the pontoon's hydrodynamic coefficients and excitation forces are computed in the frequency domain by using the potential-theory-based 3D diffraction/radiation program. In the successive time-domain simulation, the Cummins equation is used for solving the pontoon's dynamics, and the bridge girders and columns are modeled by the beam theory and finite element formulation. Then, all the components are fully coupled to solve the fully-coupled equation of motion. Subsequently, the wet natural frequencies for various bending modes are identified. Then, the time histories and spectra of the girder's dynamic responses are presented and systematically analyzed. The second-order difference-frequency wave force and slowly-varying wind force may significantly affect the girder's lateral responses through resonance if the bridge's lateral bending stiffness is not sufficient. On the other hand, the first-order wave-frequency forces play a crucial role in the vertical responses.

OGLE-2017-BLG-1049: ANOTHER GIANT PLANET MICROLENSING EVENT

  • Kim, Yun Hak;Chung, Sun-Ju;Udalski, A.;Bond, Ian A.;Jung, Youn Kil;Gould, Andrew;Albrow, Michael D.;Han, Cheongho;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyoun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.161-168
    • /
    • 2020
  • We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet-host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36-0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62-2.87 MJup, at a distance of DL = 5.67+1.11-1.52 kpc. The projected star-planet separation is a⊥ = 3.92+1.10-1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.