• 제목/요약/키워드: Natural Language AI

검색결과 130건 처리시간 0.018초

첨단 인공지능 안전 및 신뢰성 기술 표준 동향 (Standardization Trends on Safety and Trustworthiness Technology for Advanced AI)

  • 전종홍
    • 전자통신동향분석
    • /
    • 제39권5호
    • /
    • pp.108-122
    • /
    • 2024
  • Artificial Intelligence (AI) has rapidly evolved over the past decade and has advanced in areas such as language comprehension, image and video recognition, programming, and scientific reasoning. Recent AI technologies based on large language models and foundation models are approaching or surpassing artificial general intelligence. These systems demonstrate superior performance in complex problem-solving, natural language processing, and multidomain tasks, and can potentially transform fields such as science, industry, healthcare, and education. However, these advancements have raised concerns regarding the safety and trustworthiness of advanced AI, including risks related to uncontrollability, ethical conflicts, long-term socioeconomic impacts, and safety assurance. Efforts are being expended to develop internationally agreed-upon standards to ensure the safety and reliability of AI. This study analyzes international trends in safety and trustworthiness standardization for advanced AI, identifies key areas for standardization, proposes future directions and strategies, and draws policy implications. The goal is to support the safe and trustworthy development of advanced AI and enhance international competitiveness through effective standardization.

Best Practice on Automatic Toon Image Creation from JSON File of Message Sequence Diagram via Natural Language based Requirement Specifications

  • Hyuntae Kim;Ji Hoon Kong;Hyun Seung Son;R. Young Chul Kim
    • International journal of advanced smart convergence
    • /
    • 제13권1호
    • /
    • pp.99-107
    • /
    • 2024
  • In AI image generation tools, most general users must use an effective prompt to craft queries or statements to elicit the desired response (image, result) from the AI model. But we are software engineers who focus on software processes. At the process's early stage, we use informal and formal requirement specifications. At this time, we adapt the natural language approach into requirement engineering and toon engineering. Most Generative AI tools do not produce the same image in the same query. The reason is that the same data asset is not used for the same query. To solve this problem, we intend to use informal requirement engineering and linguistics to create a toon. Therefore, we propose a sequence diagram and image generation mechanism by analyzing and applying key objects and attributes as an informal natural language requirement analysis. Identify morpheme and semantic roles by analyzing natural language through linguistic methods. Based on the analysis results, a sequence diagram and an image are generated through the diagram. We expect consistent image generation using the same image element asset through the proposed mechanism.

비정형 자연어 요구사항으로부터 3D 객체 추출 메커니즘 (3D Object Extraction Mechanism from Informal Natural Language Based Requirement Specifications)

  • 김현태;김장환;공지훈;김기두;김영철
    • 정보처리학회 논문지
    • /
    • 제13권9호
    • /
    • pp.453-459
    • /
    • 2024
  • 자연어 처리를 활용한 생성 AI 기술의 최근 발전은 텍스트, 이미지 및 비디오 제작에 큰 영향을 미쳤다. 이러한 발전에도 불구하고, AI가 생성한 출력의 일관성 및 재사용 가능성과 관련하여 상당한 문제가 있다. 이는 캐릭터와 특정 객체를 생성하는 것이 중요한 만화 제작 분야에서 문제가 될 수 있다. 이를 해결하기 위해 언어 분석 기반 요구사항 엔지니어링과 만화 엔지니어링의 접목을 제안한다. 제안된 방법은 자연어 분석을 위한 Chomsky와 Fillmore의 언어학을 적용하고 객체의 상호작용을 표현하기 위한 UML 시퀀스 모델 사용하여 일관적인 3D Objects를 생성한는 것이다. 또한 자연어 입력에서 창작자의 의도를 체계적 해석한다. 이를 통해 캐릭터 또는 객체가 정의되면 다양한 패널과 에피소드에서 정확하게 재사용해 시각적, 맥락적 무결성을 유지하게 한다. 이 접근 방식은 만화에서 캐릭터 묘사의 정확성과 일관성을 향상시켜 캐릭터와 장면이 원래 요구 사항과 밀접하게 일치시킨다. 따라서 본 연구에서 제안하는 방법은 자연어 텍스트에서 복잡한 시각적 콘텐츠의 재현이 필요한 다른 분야에서도 적용할 수 있을 것으로 기대된다.

수학 문장제 해결과 관련한 ChatGPT의 교수학적 활용 방안 모색 (A study on the didactical application of ChatGPT for mathematical word problem solving)

  • 강윤지
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제38권1호
    • /
    • pp.49-67
    • /
    • 2024
  • 최근 인공지능 언어 모델의 다양한 활용에 대한 관심이 높아지면서 수학교육에서의 교수학적 활용 방안 모색에 대한 필요성이 강조되고 있다. 인공지능 언어 모델은 자연어 처리가 가능하다는 특징으로 인하여 수학 문장제 해결과 관련된 활용이 기대된다. 인공지능 언어 모델 중 하나인 ChatGPT의 성능을 확인하기 위하여 초등학교 교과서에 제시된 문장제를 해결하도록 지시하였으며 풀이 과정 및 오류를 분석하였다. 분석 결과, 인공지능 언어 모델은 81.08%의 정답률을 나타내었으며 문제 이해 오류, 식 수립 오류, 계산 오류 등이 발생하였다. 이러한 문장제 해결 과정 및 오류 유형의 분석을 바탕으로 인공지능 언어 모델의 교수학적 활용 방안과 관련된 시사점을 제안하였다.

Autonomous Vehicles as Safety and Security Agents in Real-Life Environments

  • Al-Absi, Ahmed Abdulhakim
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.7-12
    • /
    • 2022
  • Safety and security are the topmost priority in every environment. With the aid of Artificial Intelligence (AI), many objects are becoming more intelligent, conscious, and curious of their surroundings. The recent scientific breakthroughs in autonomous vehicular designs and development; powered by AI, network of sensors and the rapid increase of Internet of Things (IoTs) could be utilized in maintaining safety and security in our environments. AI based on deep learning architectures and models, such as Deep Neural Networks (DNNs), is being applied worldwide in the automotive design fields like computer vision, natural language processing, sensor fusion, object recognition and autonomous driving projects. These features are well known for their identification, detective and tracking abilities. With the embedment of sensors, cameras, GPS, RADAR, LIDAR, and on-board computers in many of these autonomous vehicles being developed, these vehicles can properly map their positions and proximity to everything around them. In this paper, we explored in detail several ways in which these enormous features embedded in these autonomous vehicles, such as the network of sensors fusion, computer vision and natural image processing, natural language processing, and activity aware capabilities of these automobiles, could be tapped and utilized in safeguarding our lives and environment.

On the Analysis of Natural Language Processing Morphology for the Specialized Corpus in the Railway Domain

  • Won, Jong Un;Jeon, Hong Kyu;Kim, Min Joong;Kim, Beak Hyun;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권4호
    • /
    • pp.189-197
    • /
    • 2022
  • Today, we are exposed to various text-based media such as newspapers, Internet articles, and SNS, and the amount of text data we encounter has increased exponentially due to the recent availability of Internet access using mobile devices such as smartphones. Collecting useful information from a lot of text information is called text analysis, and in order to extract information, it is performed using technologies such as Natural Language Processing (NLP) for processing natural language with the recent development of artificial intelligence. For this purpose, a morpheme analyzer based on everyday language has been disclosed and is being used. Pre-learning language models, which can acquire natural language knowledge through unsupervised learning based on large numbers of corpus, are a very common factor in natural language processing recently, but conventional morpheme analysts are limited in their use in specialized fields. In this paper, as a preliminary work to develop a natural language analysis language model specialized in the railway field, the procedure for construction a corpus specialized in the railway field is presented.

생성형 AI 이해 및 활용을 위한 대학 교양교과목 교육과정 개발 (Development of university liberal arts curriculum for understanding and utilizing generative AI)

  • 박지현;박종진
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.645-650
    • /
    • 2024
  • 본 논문은 챗GPT를 중심으로 생성형 AI를 활용한 대학 교양교육을 위해 지방 소재의 두 대학에서 교양교과목 교육과정을 공동으로 설계하고 개발하였다. 개발된 교육과정은 기존 연구에서 제시된 대학 챗GPT 통합 활용 수업 설계를 위한 개념적 구성요소를 고려하여 챗GPT의 기반을 이루는 언어모델과 인공지능을 이해하고 챗GPT을 포함하는 생성형 AI를 다양한 도메인에 활용하는 내용으로 개발하였다. 개발된 교육과정은 다양한 전공의 수강생을 대상으로 챗GPT의 기반인 자연어처리 언어모델과 인공지능의 개념 및 변화양상을 소개하고, 생성 AI 및 대형언어모델(LLM)인 챗GPT와 다양한 오픈소스 생성 모델을 이용하여 나만의 AI 서비스를 구현하며, 대학 교양교육에서 혁신적인 교육방법으로서, 대학간 공유협력 공동교육과정운영을 위한 사례를 제시하고자 한다.

대형 언어 모델 기반 신경망을 활용한 강구조물 부재 중량비 예측 (Predicting Steel Structure Product Weight Ratios using Large Language Model-Based Neural Networks)

  • 박종혁;유상현;한수희;김경준
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.119-126
    • /
    • 2024
  • 건물 정보 모델(BIM: Building Information Model)은 관련 기업의 개별화된 프로젝트와 학습 데이터양 부족으로 인해 인공지능(AI: Artificial Intelligence) 기반 BIM 애플리케이션 개발이 쉽지 않다. 본 연구에서는 데이터가 제한적인 상황에서 BIM의 강구조물 부재 중량비를 예측하기 위해 사전 학습이 된 대형 언어 모델을 기반으로 신경망을 학습하는 방법을 제시하고 실험하였다. 제안된 모델은 대형 언어 모델을 활용하여 BIM에 내재하는 데이터 부족 문제를 극복할 수 있어 데이터의 양이 부족한 상황에서도 성공적인 학습이 가능하며 대형 언어 모델과 연계된 신경망을 활용하여 자연어와 더불어 숫자 데이터까지 처리할 수 있다. 실험 결과는 제안된 대형 언어 모델 기반 신경망이 기존 소형 언어 모델 기반보다 높은 정확도를 보였다. 이를 통해, 대형 언어 모델이 BIM에 효과적으로 적용될 수 있음이 확인되었으며, 향후 건물 사고 예방 및 건설 비용의 효율적인 관리가 기대된다.

KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용 (KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain)

  • 김동규;이동욱;박장원;오성우;권성준;이인용;최동원
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.191-206
    • /
    • 2022
  • 대량의 말뭉치를 비지도 방식으로 학습하여 자연어 지식을 획득할 수 있는 사전학습 언어모델(Pre-trained Language Model)은 최근 자연어 처리 모델 개발에 있어 매우 일반적인 요소이다. 하지만, 여타 기계학습 방식의 성격과 동일하게 사전학습 언어모델 또한 학습 단계에 사용된 자연어 말뭉치의 특성으로부터 영향을 받으며, 이후 사전학습 언어모델이 실제 활용되는 응용단계 태스크(Downstream task)가 적용되는 도메인에 따라 최종 모델 성능에서 큰 차이를 보인다. 이와 같은 이유로, 법률, 의료 등 다양한 분야에서 사전학습 언어모델을 최적화된 방식으로 활용하기 위해 각 도메인에 특화된 사전학습 언어모델을 학습시킬 수 있는 방법론에 관한 연구가 매우 중요한 방향으로 대두되고 있다. 본 연구에서는 금융(Finance) 도메인에서 다양한 자연어 처리 기반 서비스 개발에 활용될 수 있는 금융 특화 사전학습 언어모델의 학습 과정 및 그 응용 방식에 대해 논한다. 금융 도메인 지식을 보유한 언어모델의 사전학습을 위해 경제 뉴스, 금융 상품 설명서 등으로 구성된 금융 특화 말뭉치가 사용되었으며, 학습된 언어 모델의 금융 지식을 정량적으로 평가하기 위해 토픽 분류, 감성 분류, 질의 응답의 세 종류 자연어 처리 데이터셋에서의 모델 성능을 측정하였다. 금융 도메인 말뭉치를 기반으로 사전 학습된 KB-BERT는 KoELECTRA, KLUE-RoBERTa 등 State-of-the-art 한국어 사전학습 언어 모델과 비교하여 일반적인 언어 지식을 요구하는 범용 벤치마크 데이터셋에서 견줄 만한 성능을 보였으며, 문제 해결에 있어 금융 관련 지식을 요구하는 금융 특화 데이터셋에서는 비교대상 모델을 뛰어넘는 성능을 보였다.

전통적인 챗봇과 ChatGPT 연계 서비스 방안 연구 (A Study on the Service Integration of Traditional Chatbot and ChatGPT)

  • 정천수
    • Journal of Information Technology Applications and Management
    • /
    • 제30권4호
    • /
    • pp.11-28
    • /
    • 2023
  • This paper proposes a method of integrating ChatGPT with traditional chatbot systems to enhance conversational artificial intelligence(AI) and create more efficient conversational systems. Traditional chatbot systems are primarily based on classification models and are limited to intent classification and simple response generation. In contrast, ChatGPT is a state-of-the-art AI technology for natural language generation, which can generate more natural and fluent conversations. In this paper, we analyze the business service areas that can be integrated with ChatGPT and traditional chatbots, and present methods for conducting conversational scenarios through case studies of service types. Additionally, we suggest ways to integrate ChatGPT with traditional chatbot systems for intent recognition, conversation flow control, and response generation. We provide a practical implementation example of how to integrate ChatGPT with traditional chatbots, making it easier to understand and build integration methods and actively utilize ChatGPT with existing chatbots.