• 제목/요약/키워드: Natural Gas Vehicle

검색결과 128건 처리시간 0.022초

압축천연가스 자동차의 안전성 향상을 위한 제언 (Suggestion for Safety Improvement of Compressed Natural Gas Vehicle)

  • 김영섭;박교식;김태옥
    • 한국가스학회지
    • /
    • 제16권4호
    • /
    • pp.1-7
    • /
    • 2012
  • 지난 2010년 8월 9일 발생한 압축천연가스(compressed natural gas, CNG) 버스의 내압용기 파열사고 이후 정부는 CNG자동차의 안전관리 체계를 구축하기 위하여 다각적인 연구를 수행하였으며, 본 내용은 그 주요 내용을 정리한 것이다. CNG자동차의 안전성 향상을 위해 관련 법령, 검사 인증기준 등 안전관리제도를 검토하였고, 더불어 CNG자동차 관련 종사자(검사원, 정비원)에 대한 교육훈련 등도 검토하였다. 주요 검토내용으로는 CNG자동차용 용기형태, CNG용기의 설치위치, 압력방출배관의 재질 및 설치형태, 배관접속 및 접합방법, 가스누출 경보시스템, 긴급차단밸브 및 작동 스위치, CNG용기 보호커버, CNG 자동차 충전사업자의 공급자 의무사항, CNG자동차의 정기검사제도, CNG자동차의 일상점검 제도, CNG자동차 종사자의 교육훈련제도, CNG버스 운송사업체의 안전관리자 선임제도 등이다. 위의 주요 항목들을 중점적으로 검토하여 CNG자동차의 안전성 향상 방안을 제안하였다.

희박 천연가스 자동차용 NOx 흡장촉매와 TWC의 NOx 반응특성 비교 (Comparison of NOx Reduction Characteristics of NOx Storage Catalyst and TWC for Lean-burn Natural Gas Vehicles)

  • 최병철;정우남;이춘희
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.79-84
    • /
    • 2004
  • We evaluated the reduction performance of NOx storage catalyst and TWC for lean-burn natural gas engine by the model gas. The method of unsteady state reaction was used to compare with reduction performances of NOx storage catalyst and TWC. It was found that the effective parameter was rich spike duration, temperature of the model gas. In the presence of $CO_2$ and $H_2O$ in the reaction mixture was decreased the NOx reduction performance.

자동차 CNG용 고압 레귤레이터의 특성해석에 관한 연구 (A Study on the Characteristics of High Pressure Regulator for Vehicle CNG)

  • 김병우
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5997-6003
    • /
    • 2011
  • 자동차 천연가스의 주행거리를 증가시키기 위해서는 연료용기의 고압이 필요하고 고압의 연료를 적절한 압력으로 저감시키는 기술개발이 요구된다. 본 연구에서는 천연가스 자동차에서 가장 중요한 압력 제어기의 압력특성을 조사하였다. 압력 제어기에서의 히스테리시스, 압력저하 및 제어기의 유량특성을 수학적으로 해석하였다. 또한, 본 논문에서는 CNG 제어기에 대한 새로운 방식의 유압해석 방법을 제시하였다. 마지막으로 실험을 실시하여 실제 동작조건에서 압력 제어기의 수학적 해석의 유용성을 검증하였다.

공기부양선의 추진 및 부양축계 비틀림진동 해석 연구 (A Study on the Analysis of Torsional Vibration of Branched Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.335-342
    • /
    • 2007
  • A propulsion and lift shafting system in an air cushion vehicle is flexible multi-elements system which consists of two aeroderivative gas turbines with own bevel gears, four stage lift fan reduction gear, two stage propulsion reduction gear air propellers and high capacity of lifting fans. In addition, the system includes the multi-branched shafting with multi-gas turbine engines and thin walled shaft with flexible coupling. Such a branched shafting system has very intricate vibrating characteristics and especially, the thin walled shaft with flexible couplings can lower the torsional natural frequencies of shafting system to the extent that causes a resonance in the range of operating revolution. In this study, to evaluate vibrational characteristics some analytical methods for the propulsion and lift shafting system are studied. The analysis, including natural frequencies and mode shapes, for five operation cases of the system is conducted using ANSYS code with a equivalent mass-elastic model.

CNG/LPG Bi-fuel 승용차의 배출가스 특성 (Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars)

  • 조종표;이영재;김강출;권오석
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

천연가스자동차용 LNG용기에서의 차량가속도와 Heat leak 관계 해석 (Analysis of heat leak with the car acceleration for LNG tank of Natural Gas Vehicle)

  • 알료나 민카쇄바;유영민;박용국;김성준
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.11-20
    • /
    • 2006
  • LNG is a valuable fuel since it offers some environmental, energy security and economic benefits over diesel. It could be used mainly in heavy-duty trucks and buses. Car acceleration induces the slope angle of the liquid fuel in the tank. Slope angle changes the surface area wetted by liquid fuel and consequently heat leak to the tank. This research is a result of numerical simulation of the heat leak with the car acceleration to LNG tank. The "Pro-HeatLeak" Fortran program is developed and the verification test of the developed program is done. The difference between numerical results and calculated results from MathCad verification test is less than 0.07 percent. The smallest heat leak is correspond to the case without oscillation. For the high car acceleration the value of heat leak is greater than that for the small acceleration. The difference between maximum and minimum heat leak for 10 gallons of fuel vapor in the tank is about 10 percent.

  • PDF

CNG버스 내압용기 사용 및 안전관리 실태 분석 (Analysis on Actual Condition of Usage and Safety Management for CNG Pressure Vessel in Bus)

  • 김의수
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.6-14
    • /
    • 2019
  • There are about 38,977 CNG cars and 247 natural gas vehicle charging stations in operation in order to improve the urban air environment. With the introduction of natural gas vehicles, the atmospheric environment, which was the main cause of air pollution in the metropolitan area, was remarkably improved. However, unlike these positive effects, CNG bus accidents, which occurred more than 10 times since 2005, have caused concern among the majority of citizens using public transportation. It is necessary to make a judgment on the feasibility and future direction of CNG pressure vessel safety management that can safeguard the safety of CNG pressure vessel at the time of starting. In this study, we investigates production and use of CNG vessel, the current status of safety management of CNG bus transportation companies & charging stations and then proposes measures to prevent accident recurrence and safety management based on the actual situation investigation and analysis.

부분부하에서 연료 조성이 천연가스 엔진의 연소 및 배기에 미치는 영향 (The Effect of Fuel Composition on Emissions and Combustion of CNG Engine at Partial Load)

  • 김형민;이기형;김봉규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3288-3293
    • /
    • 2007
  • Compressed natural gas has good potential for alternative vehicle fuel due to its economical and clean characteristics. However, the composition of natural gas based on production location is known to affect performance and emissions of CNG engine. Thus, the objective of this paper is to clarify the effect of fuel composition on combustion and emissions of CNG engine. This paper presents combustion characteristics obtained from running a 2.5L, 4-cylinder CNG engine retrofitted IDI diesel engine with engine dynamometer. BSFC, emissions, fuel consumption and combustion pressure were measured under steady state operating conditions especially at partial load for CNG engine. Based on the experimental results, we found that CNG composition affects engine performance, fuel conversion efficiency and burning rate.

  • PDF

A Case Study of Decreasing Environment Pollution Caused by Energy Consumption of a Dormitory Building Which Only Using Electricity by Efficiently Simulating Applying Residential SOFC (Solid Oxide Fuel Cell)

  • Chang, Han;Lee, In-Hee
    • Architectural research
    • /
    • 제21권1호
    • /
    • pp.21-29
    • /
    • 2019
  • Recent years in Korea, some new developed buildings are only using electricity as power for heating, cooling, bathing and even cooking which means except electricity, there is no natural gas or other kinds of energy used in such kind of building. In vehicle industry area, scientists already invented electric vehicle as an environment friendly vehicle; after that, in architecture design and construction field, buildings only using electricity appeared; the curiosity of the environment impact of energy consumption by such kind of building lead me to do this research. In general, electricity is known as a clean energy resource reasoned by it is noncombustible energy resource; however, although there is no environmental pollution by using electricity, electricity generation procedure in power plant may cause huge amount of environment pollution; especially, electricity generation from combusting coal in power plant could emit enormous air pollutants to the air. In this research, the yearly amount of air pollution by energy using under traditional way in research target building that is using natural gas for heating, bathing and cooking and electricity for lighting, equipment and cooling is compared with yearly amount of air pollution by only using electricity as power in the building; result shows that building that only uses electricity emits much more air pollutants than uses electricity and natural gas together in the building. According to the amount of air pollutants comparison result between two different energy application types in the building, residential SOFC (Solid oxide fuel cell) is simulated to apply in this building for decreasing environment pollution of the building; furthermore, high load factor could lead high efficiency of SOFC, in the scenario of simulating applying SOFC in the building, SOFC is shared by two or three households in spring and autumn to increase efficiency of the SOFC. In sum, this research is trying to demonstrate electricity is a conditioned environment friendly energy resource; in the meanwhile, SOFC is simulated efficiently applying in the building only using electricity as power to decrease the large amount of air pollutants by energy using in the building. Energy consumption of the building is analyzed by calibrated commercial software Design Builder; the calibrated mathematical model of SOFC is referred from other researcher's study.