• 제목/요약/키워드: Natural Gas Combustion

검색결과 266건 처리시간 0.113초

Exergy Analysis on the System of Superheated Steam (700℃, 3 atm) Production for the Reversible Electrolysis: Based Hydrogen Production (양방향수전해 기반 수소제조용 초고온스팀 생산시스템의 엑서지 분석)

  • HAN, DANBEE;PARK, SENGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • 제29권3호
    • /
    • pp.235-242
    • /
    • 2018
  • Hydrogen can be produced by reforming reaction of natural gas (NG) and biogas, or by water electrolysis. In this study, hydrogen production through water-electrolysis needs superheated steam above $700^{\circ}C$ for high efficiency. The production method of hydrogen like this was recommended for the 4-type processes for superheated steam ($700^{\circ}C$, 3 atm) by Bio-SRF combustion furnace. The 4-type processes to produce superheated steam at $700^{\circ}C$ from the heat source of SRF combustion furnace was simulated using PRO II. The optimum process was selected through exergy analysis. The difference of process 1 and 2 is to the order of depressure and heating process to change $180^{\circ}C$ and 7 atm to $700^{\circ}C$ and 3 atm. Process 3 and 4 is to utilize 25% of steam to generate superheated steam and remaining to use for the power generation by steam generator.

Corrosion Characteristics of St37.4 Carbon Steel for Ship Fuel Pipe with Ammonia Concentration (선박 연료배관용 St37.4 탄소강의 암모니아 농도에 따른 부식 특성)

  • Do-Bin, Lee;Seung-Jun, Lee
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.514-524
    • /
    • 2022
  • Carbon emissions from fuel consumption have been pointed by scientists as the cause of global warming. In particular, fossil fuels are known to emit more carbon when burned than other types of fuels. In this regard, International Maritime Organization has announced a regulation plan to reduce carbon dioxide emissions. Therefore, recently, Liquefied Natural Gas propulsion ships are responding to such carbon reduction regulation. However, from a long-term perspective, it is necessary to use carbon-free fuels such as hydrogen and ammonia. Nitrogen oxides might be generated during ammonia combustion. There is a possibility that incompletely burned ammonia is discharged. Therefore, rather than being used as a direct fuel, Ammonia is only used to reduce NOX such as urea solution in diesel vehicle Selective Catalyst Reduction. Currently, LPG vehicle fuel feed system studies have evaluated the durability of combustion injectors and fuel tanks in ammonia environment. However, few studies have been conducted to apply ammonia as a ship fuel. Therefore, this study aims to evaluate corrosion damage that might occur when ammonia is used as a propulsion fuel on ships.

Study on the Performance of a Spark Ignition Gas Engine for Power Generation fueled by the Methane/Syngas Mixture (메탄/합성가스 혼합물에 의한 발전용 SI 가스엔진의 성능에 관한 연구)

  • Cha, Hyoseok;Hur, Kwang Beom;Song, Soonho
    • Journal of the Korean Institute of Gas
    • /
    • 제19권5호
    • /
    • pp.7-12
    • /
    • 2015
  • Hydrogen is usually produced by using syngas generated by the fuel reforming for natural gas so far. The further process is needed for increasing the hydrogen yield of syngas. However, the process for upgrading the hydrogen yield is accompanied by additional energy sources and economic costs. Thus related studies on the method for using as a mixture in itself have been conducted in order to utilize more efficiently syngas. The effect on the engine performance for methane/syngas mixture of 30kW spark ignition gas engine for power generation has been investigated in this study. As a result, it was found that the combustion phenomena such as the maximum in-cylinder pressure and crank angle at that time have been improved by methane/syngas mixture. Through these, fuel conversion efficiency could be enhanced by about 98% of methane/hydrogen mixture and $NO_x$ emissions could be reduced by about 12% of methane-hydrogen mixture.

Environmental Issues for the Hydraulic Fracturing Applied in the Process of the Shale Gas Development (셰일가스 개발 시 적용되는 수압파쇄공법에 의한 환경문제)

  • Han, Hyeop-Jo;Kim, Kyoung-Woong;Na, Kyung-Won;Park, Hee-Won;Lee, Jin-Soo;Shim, Yon-Sik
    • Economic and Environmental Geology
    • /
    • 제46권1호
    • /
    • pp.63-69
    • /
    • 2013
  • This paper discusses important environmental issues that must be considered during shale gas development. Shale gas has been attracting many attention as the next key energy resource with its large abundance through easily accessible production fields, and its lower carbon dioxide & sulfur dioxide emission profile upon combustion when compared to the conventional oil and natural gas resources. Successful development of a shale gas field requires the use of hydraulic fracturing to recover hydrocarbon through the very tight shale formation, which has been frequently associated with environmental contamination issue of water, soil, and atmosphere. Therefore, environmental issues and their solution to minimize environmental impact should be considered for successful development of shale play in a future.

Study on the Stability Test of Impinging(FOOF) Injector on $GN_2$ Purge Cold Flow Test (질소분사 음향시험을 통한 충돌형(FOOF) 분사기의 안정성 평가에 관한 연구)

  • Yoo Doc-Koon;Lee Kwang-Jin;Seo Seong-Hyeon;Han Young-Min;Choi Hwan-Seok;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.135-140
    • /
    • 2006
  • In the experimental study of $N_2$ purge cold flow test of impinging(FOOF) injector for determining of instability region, the whistling sound which has a specific frequency is generated. The frequency of whistling is proportional to the gas flow velocity in part of the oxidizer orifice and due to the coupling of the vibrating gas column and the natural frequency of pipe-orifice shape, the discontinuous jumping phenomena arises. The whistling phenomena have no effect on the combustion instability. Compared the damping factor of 1T1L mode with the hot fire test, the instability region of $N_2$ purge cold flow test is very much like that. It means that flow instability by impinging or mixing of jet is the main reason of combustion instability of impinging injector(FOOF) in the hot firing test.

  • PDF

Advances of Post-combustion Carbon Capture Technology by Dry Sorbent (건식흡수제 이용 연소배가스 이산화탄소 포집기술)

  • Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.140-146
    • /
    • 2010
  • This paper addresses recent status and trends of carbon dioxide capture technologies using dry sorbents in the flue gas. The advantages of dry sorbent $CO_2$ capture technology are broader operating temperature range, less energy loss, less waste water, less corrosion problem, and natural properties of solid wastes. Recently, U.S.A. and Korea have been developing processes capturing $CO_2$ from real coal flue gas as well as sorbents improving sorption capacity to decrease total $CO_2$ capture cost. New class of dry sorbents have been developed such as chemisorbents with alkali metals of which material cost is low, amines physically adsorbed on silica supports, amines covalently tethered to the silica support, carbon-supported amines, polymer-supported amines, amine-containing solid organic resins and metal-organic framework. The breakthrough is needed in the materials on dry sorbents to decrease capture cost.

Study of Performance and Knock Characteristics with Compression Ratio Change in HCNG Engine (HCNG 엔진에서 압축비 변경에 따른 성능 및 노킹 특성 연구)

  • Lim, Gi Hun;Lee, Sung Won;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제37권4호
    • /
    • pp.387-394
    • /
    • 2013
  • Hydrogen-compressed natural gas (HCNG) blend has attracted attention as a fuel that can reduce $CO_2$ emissions because it has low carbon content and burns efficiently. An increase in the compression ratio of HCNG engines was considered as one of the methods to improve their efficiency and reduce $CO_2$ emissions. However, a high combustion rate and flame temperature cause abnormal combustion such as pre-ignition or knocks, which in turn can cause damage to the engine components and decrease the engine power. In this study, the performance and knock characteristics with a change in the compression ratio of an HCNG engine were analyzed. The combustion characteristics of HCNG fuel were evaluated as a function of the excess air ratio using a conventional CNG engine. The effects of the compression ratio on the engine performance were evaluated through the same experimental procedures.

Influence of Propellant Mixture ]Ratio Variation near Chamber Wall (액체로켓엔진의 내부 벽면 근처에서의 추진제 혼합비 변화의 영향에 대한 연구)

  • Han Poong-Gyoo;Chang Haeng-Soo;Cho Yong-Ho;Kim Kyoungho
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.255-258
    • /
    • 2002
  • Liquid rocket engines using liquefied natural gas (LNG) or methane as a fuel is known to have several good characteristics, such as high specific impulse compared to other hydrocarbon fuels, environment-friendly exhaust gas, low production cost, and re-usability with low soot generation in the cooling channel. In this study, experimental combustion chambers capable of using LNC and $CH_{4}$ are being researched through experimental firing tests, and within easy range of eyes' inspection, there are the periodical existence of soot or discoloration in the chamber wall surface. This result means that mixture ratio of oxidizer and fuel fluctuates periodically between outer-row injectors in the mixing head in the circumferential direction. Therefore, based on this phenomenon, the variation of mixture ratio near the chamber wall caused by the spill pattern of a shear coaxial injector was analyzed quantitatively and the thermal heat flux Into the cooling channel is modified. Then, the calculated and modified results are compared with the measured ones.

  • PDF

A Study on the Development Trend of Explosion and Combustion Energy (폭발.연소 에너지의 개발 방향에 관한 연구)

  • Shin, Chang-Yong;Ahn, Myung-Seog;Jo, Myung-Chan
    • Explosives and Blasting
    • /
    • 제27권2호
    • /
    • pp.56-60
    • /
    • 2009
  • In view of physics, energy is defined as the ability to work. The use of natural gas and nuclear power have been increased since 1980s to replace fossil fuels such as coal and petroleum. Recently, solar energy, wind power, tidal power, and geothermal energy have been considered as promising alternative energy sources to overcome environmental pollution. However, their energy efficiencies are much lower than those of chemical energies such as nuclear power, explosive, and petroleum gas. In this study, the present situation of the green energy was reviewed to seek out the way to overcome the limit of the environmental (alternative) energy. Also, purification, application and development trend of the highly efficient alternative energy sources were investigated.

Effects of Injection Timing on the Lean Misfire Limit in a SI Engine (가솔린 엔진의 연료분사시기가 희박가연한계에 미치는 영향에 관한 연구)

  • 엄인용;정경석;정인석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제5권5호
    • /
    • pp.97-103
    • /
    • 1997
  • Effects of fuel injection timing on the lean misfire limit of a sequential MPI SI engine has been investigated. To investigate the interaction of injection timing and intake flow characteristics, so called axial stratification phenomena, 4 kinds of different intake swirl port of the same combustion chamber geometry have been teated in a single cylinder engine test bench. And 2 kinds of fuel, gasoline and compressed natural gas(CNG), were used to see the effect of liquid fuel vaporization. Result shows that combination of port swirl and injection timing governs the lean misfire limit and lean misfire limit envelopes remain almost the same for a given ratio regardless of engine speed. It is also found that two phase flow has some effects on lean misfire limit.

  • PDF