• Title/Summary/Keyword: Natural Gas Combustion

Search Result 266, Processing Time 0.02 seconds

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

A Study on Optimization of Diesel Combustion in condition of Premixed Natural gas (천연가스 예혼합 분위기 내 디젤 연소의 최적화에 관한 연구)

  • Suh, Hyunuk;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.141-142
    • /
    • 2014
  • This numerical study was carried out to optimize dual fuel combustion on natural gas-diesel in static chamber. Spray experiments conducted under conditions of premixed methan 0%, 5% and 10%. In the results, penetration decreases when premixed methane is increasing. Constants of numerical models were acquired from results of spray experiments to enhance accuracy of numerical study. And dual fuel engine simulation was implemented by using AVL-FIRE with acquired constants.

  • PDF

Combustion characteristics and gas interchangeability of natural gas with various compositions (다양한 성분을 가지는 천연가스의 연소특성 및 호환성)

  • kim, Jong-min;Yu, Byeonghun;Lee, Seungro;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.89-91
    • /
    • 2012
  • In this study, an investigation into the gas interchangeability and combustion characteristics of natural gas with various compositions was performed. In order to suggest the appropriateness of gas interchangeability using the specific gravity(SG) and the Wobbe index(WI) values, combustion characteristics, which include incomplete combustion and flame lifting, were measured and observed for the upper and lower limits using the gas-oven as a domestic partial-premixed type appliance and the condensing boiler as a domestic premixed type appliance.

  • PDF

A Case Study on The Reduction and Examination for Noise and Vibration of Backpass Heat Surface in the Power Plant Boiler (발전용 보일러의 후부 전열면 소음진동 저감에 관한 사례 연구)

  • Lee, Gyoung-Soon;Lee, Tae-Hoon;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.642-647
    • /
    • 2008
  • The boiler structure is determined by combustion characteristics and construction costs in the combustion chamber of a large commercial boiler. The heat transfer in boiler is composed of the radiation and the convection. The convective heat transfer has happened to back-pass heating surface. The combustion gas sequentially passes through the reheater tube, 1st economizer tube, and 2nd economizer tube. In case of being lowered in boiler height, we have to install additional tube bundle in back-pass heating surface for increasing the heat transfer of boiler, which causes the noise and vibration from combustion gas. When the combustion gas passes through the back-pass tube bundle in specified load of commercial boiler, this paper analyzes the acoustic characteristics between vortex-shedding frequency and natural frequency in tube bundle cavity. The case study reduce the resonance by changing natural frequency characteristics of tube-bundle cavity using a way to install ant-noise baffle in the direction of combustion gas flow.

  • PDF

Combustion Characteristics of HCNG Burner System with Tail Gas Addition (HCNG용 버너시스템에서 Tail Gas 첨가 시 연소특성)

  • Han, J.O.;Lee, J.S.;Kim, H.T.;Kim, S.M.;Lee, Y.C.;Kim, Y.C.;Hong, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.36-39
    • /
    • 2015
  • The combustion characteristics of metal fiber burner fueled natural gas with tail gas produced from reforming process were analyzed on the point of flame stability and excess air conditions. Also, it was analyzed the effect of energy efficiency improvement due to decrease the fuel input in reforming system by using residue gases. As a results, it was confirmed that tail gas including hydrogen, CO and $CO_2$ could be directly injected without any change of air control system in natural gas burner and also energy efficiency was increased up to 30% maintained stable combustion.

A cause analysis of Noise & Vibration of Gas Heater (가스히터의 소음 진동 원인 분석)

  • Koh, Jae-Pil;You, Hyun-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • A cause of noise and vibration which come from a Combustion of gas heater are a combustion roar and Combustion oscillation. A character of a combustion roar is that sound pressure is distribute with broad band frequency. otherwise, The presence of combustion oscillation caused by positive Feed Back in Combustion Chamber break out a noise and vibration. Accordingly, The method that be solved a noise and vibration is to make each natural frequency different frequency. first, in order to solve problem, we control ratio of fuel and air. that is, Keep away resonance. second, in order to changing natural frequency of Combustion Chamber, We changed the shape of Economizer.

  • PDF

Characteristics of Combustion and Emission for Synthetic Natural Gas in CNG Engine (CNG엔진에서 합성가스 연료의 연소 및 배기 특성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.8-14
    • /
    • 2015
  • Synthetic natural gas(SNG), acquired from coal, is regarded as an alternative to natural gas since a rise in natural gas due to high oil price can be coped with it. In the present study, 11-liter heavy duty compressed natural gas(CNG) engine was employed in order to examine the combustion and emission characteristics of SNG. The simulated SNG, made up 90.95% of methane, 6.05% propane and 3% hydrogen was used in the experiment. Power output, thermal efficiency, combustion stability and emission characteristics were compared to those with CNG at the same engine operating conditions. Knocking phenomenon was also analyzed at 1260 rpm, full load condition. Combustion with SNG was more stable than CNG. Nitrogen oxides emissions increased while Carbon dioxides emissions decreased. Anti-knocking characteristics were improved with SNG.

Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-looping Combustor in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 매체순환식 가스연소기용 대량생산 산소공여입자들의 천연가스 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.151-160
    • /
    • 2009
  • Natural gas combustion characteristics of mass produced oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Five particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN703-950, OCN703-1100 were used as oxygen carrier particles. Natural gas and air were used as reactants for reduction and oxidation, respectively. During reduction reaction, high fuel conversion and high $CO_2$ selectivity were achieved for most of oxygen carriers. During oxidation, NO emission was very low. These results indicate that inherent $CO_2$ separation and low NOx combustion are feasible for the natural gas fueled chemical-looping combustion system. Among the five oxygen carriers, OCN703-1100 particle was selected as the best candidate for demonstration of long-term operation in large-scale chemical-looping combustor from the viewpoints of fuel conversion, $CO_2$ selectivity, $CH_4$ concentration, and CO concentration.

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

Combustion Characteristics of Pre-mixed Charge Compression Ignition Engines with Natural Gas Applied to 4-Cylinders Diesel Engine (4기통 디젤기관에 적용한 천연가스 예혼합 압축착화 기관의 연소특성)

  • Jung, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.5-10
    • /
    • 2009
  • In recently, studies concerned to the diesel engine uses a natural gas as a fuel oil whose infra has been built already was approached to PCCI or HCCI with keeping a high thermal efficiency and reducing NOx and PM have been researching actively in normally single cylinder. An ignition source is required to bum the natural gas by a spark plug in gasoline engines, due to a higher auto-ignition temperature of natural gas. Then gas oil and DME were introduced as the ignition source. In this study as basic data for practical use of natural gas PCCI and HCCI engines, combustion characteristics and emission characteristics on 4-cylinders natural gas PCCI and HCCI engines with gas oil and DME as ignition sources were analyzed and the engine load range that is main object for practical use of PCCI and HCCI engines was made clearly by empirical experiment.

  • PDF