• Title/Summary/Keyword: Natural Gas

Search Result 2,380, Processing Time 0.031 seconds

Recent advances in natural gas hydrate carriers for gas transportation - A review and conceptual design

  • Kim, Kipyoung;Kim, Youtaek;Kang, Hokeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.589-601
    • /
    • 2014
  • Natural gas hydrate (NGH) is emerging as a new eco-friendly source of energy to replace fossil fuels in the 21st century. It is well known that the Natural Gas Hydrate contains large amount of natural gas about 170 times as much as its volume and it is easy to be stored and transported safely at about $-20^{\circ}C$ under atmospheric pressure due to so called "self-preservation effect". The option of gas transport by gas hydrate pellets carrier has been investigated and developed in various industry and academy. The natural gas hydrate pellet carrier is on major link in a potential gas hydrate process chain, starting with the extraction of natural gas from the reservoir, followed by the production of hydrate pellets and the transportation to an onshore terminal for further processing or marketing. In recent years, Korean project team supported by Korean Government has been working on the development of NGH total systems including novel NGH carrier since 2011. In order to increase the knowledge on the NGH pellet carrier developed and to understand the major hazards that could have significant impact on the safety of the vessel, this paper presents and evaluates the pros and cons of cargo holds, loading and unloading systems through the analysis of current patent technology. Based on the proven and well-known technologies as well as potential measures to mitigate sintering and minimize mechanical stress on the hydrate pellet in the self-preservation state, this study presents the conceptual and basic design for NGH carrier.

The Economic Aspect of Gas Hydrate Development (경제성 측면에서의 가스하이드레이트 개발 가치)

  • Kim, Hwa-Young;Lee, Dong-Jun;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.61-67
    • /
    • 2008
  • The price to import natural gas continues to rise, as well as the rate of its domestic consumption. This research examined the economic feasibility of domestically developing and producing gas hydrate to substitute imported natural gas. Today, the industry still lacks the technology to commercially produce gas hydrate. However, if the gas hydrate is able to be commercially produced domestically and replace imported natural gas, the annual economic benefit for the Republic of Korea would be 211 - 833 USD/ton. Gas hydrate is rated as a high value investment by the gas industry since the potential annual profit can reach over 150USD/ton. The commercial value of gas hydrate development will increase as long as the natural gas market continues to expand and its consumption increase remains steady. With further development of technology, one can anticipate an even higher expected return on the investment.

  • PDF

Effects of the Amount of Natural Gas in Fuel Blends on the Exhaust Gas of the Diesel Engines (혼합연료의 천연가스량이 디젤기관의 배기가스에 미치는 영향)

  • 박명호;김성준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.67-72
    • /
    • 1997
  • The purpose of this study os to investigate how the natural gas in fuel blend influences the polutant emission of diesel engine. Four stroke cycle single cylinder engine is used for this experiment and four kind of fuel blends were made. Fuel blends show four different torque ratios between diesel oil and natural gas, which are 4 : 0. 3 : 1, 2 : 2 and 1 : 3. The constituents of exhaust gases of engine are analyzed for every fuel blend. The experimental results say that the mixing of natural gas into diesel fuel is an very effective way to reduce the amount of soot in the exhaust gas.

  • PDF

Establishment of natural gas high-pressure pipeline network model in Korea (천연가스 전국 고압 배관망 모델 수립)

  • Park Young;Lee Young Chul;Lee Jeong Hwan;Cho Byoung Hak;Lim Jong Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.43-51
    • /
    • 2001
  • ln this study, a natural gas pipeline network model was established using STONER. First a map of natural gas pipeline network was drawn on STONER and then the length and diameter of the pipe were inputted. And as the specific gravity of gas flowing in the pipeline which is the value of natural gas was inputted. Finally in order to decide the pipeline variables and gas temperature, through the verification with observed real data, the possible error was minimized. For the verification, the pipeline variables and gas temperature were assumed and the pipeline network analysis was accomplished with real demand data. The square deviation of analysed pressure from observed pressure was calculated and the minimum case was selected for the optimum pipeline variables and gas temperature. Thus a proper natural gas pipeline network model for real network was established.

  • PDF

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

Flow Control of a Solenoid Gas Injector and Its Application on a Natural Gas Engine (솔레노이드 가스 인젝터의 유량제어와 천연가스엔진에서의 응용)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • An air-fuel ratio control is essential in reducing hazardous exhaust emissions from a compressed natural gas(CNG) engine, and can be accomplished by accurate control of gas injection flow. In this study, theoretical research was conducted on injection characteristics of a solenoid gas injector, and injection experiments for calibration and analysis were performed. Various factors for gas injection flow such as injection pressure, gas temperature, and supply voltage are studied. A dynamic flow equation of the natural gas was proposed on the basis of flow dynamics theories and results of the injection experiment. The verification of the dynamic flow equation of the solenoid injector was carried out with a large CNG-engine applied to an urban bus. Air-fuel ratio control experiments were conducted in both steady and transient state. Results of injection experiments for the solenoid injector and the CNG-engine was proved the control method proposed herein to be effective.

  • PDF

Utilization of alternative marine fuels for gas turbine power plant onboard ships

  • El Gohary, M. Morsy;Seddiek, Ibrahim Sadek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-32
    • /
    • 2013
  • Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

A study on performance improvement of natural gas fueled engine (천연가스 기관의 성능 향상에 관한 연구)

  • 정동수;정진도;서승우;최교남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 1992
  • Generally speaking, natural gas possesses several characteristics that make it desirable as an engine fuel : for example (1) lower production cost, (2) abundant commodity and (3) cleaner energy source than gasoline. Due to the physical characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of 10-20% when compared to a convensional gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of air/fuel ratio, spark timing advance and supercharging effect by forced air supply method.

Modeling the Dual-Fuel Combustion of Natural Gas and Pilot Distillate Injected Directly into a Diesel Combustion Bomb (디젤연소용기에 직접분사된 천연가스와 파일럿오일의 복합연소 모델링)

  • 최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.155-164
    • /
    • 1996
  • Dual-fuel engines are being researched with emphasis on the possible types of natural gas supply systems. Hence, a three-dimensional combustion model by using finite volume method was developed to provide a fundamental understanding of the auto-ignition of pilot distillate and subsequent burning of natural gas, when the natural gas as well as the distillate was directly injected into a quiescent diesel engine like combustion bomb tests and the numerical results were investigated for the mixed combustion phenomena. With high-pressure natural gas injection, it was found that the gaseous fuel injection characteristics had to be well harmonised with that of the pilot distillate. For better combustion efficiency, however, further researches are required for the optimisation of injection system in the existence of air motion.

  • PDF

Dual-Fuel Combustion Phenomena of Pilot Distillate Injected to Pre-mixed Natural Gas in a Constant Volume Combustion Bomb (천연가스가 예혼합된 정적연소실에 파일럿오일을 분사한 복합연소현상)

  • Choi, I.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.112-122
    • /
    • 1995
  • As an alternative fuel producing less exhaust emissions, natural gas is of interest for use both in SI and CI engines. The potential of natural gas fuelled dual-fuel engine is considered high enough. However, much effort has to be made so that gaseous fuel is used efficiently with simultaneous minimum use of pilot oil. Hence, a simplified three-dimensional model, using a finite volume method in cylindrical coordinates, has been developed to facilitate an understanding of the dual-fuel combustion phenomena and to predict the complex interactions between the pilot distillate and natural gas. The computer model was calibrated by comparing it with the experimental results obtained from diesel engine like combustion bomb tests. In the pre-mixed natural gas combustion, the fuel burning was highly reliant on the injection condition and subsequent burning nature of the pilot distillate.

  • PDF