• 제목/요약/키워드: Natural Frequency and Mode

검색결과 1,006건 처리시간 0.023초

Application of Hilbert-Huang transform for evaluation of vibration characteristics of plastic pipes using piezoelectric sensors

  • Cheraghi, N.;Riley, M.J.;Taherit, F.
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.653-674
    • /
    • 2007
  • This paper discusses the application of piezoelectric sensors used for evaluation of damping ratio of PVC plastics. The development of the mathematical formulation based on the Empirical Mode Decomposition for calculating the damping coefficient and natural frequency of the system is presented. A systematic experimental and analytical investigation was also carried out to demonstrate the integrity of several methods commonly used to evaluate the damping of materials based on a single degree freedom formulation. The influence of the sensors' location was also investigated. Besides the commonly used methods, a newly emerging time-frequency method, namely the Empirical Mode decomposition, is also employed. Mathematical formulations based on the Hilbert-Huang formulation, and a frequency spacing technique were also developed for establishing the natural frequency and damping ratio based on the output voltage of a single piezoelectric sensor. An experimental investigation was also conducted and the results were compared and verified with Finite Element Analysis (FEA), revealing good agreement.

대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진 (Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant)

  • 방경보;김철홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구 (A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

하부 구조의 고유 진동수비에 따른 돔 구조의 고유 진동 특성에 관한 연구 (A Study on Natural Vibration Characteristics of Dome Structure According to Natural Frequency Ratio of Substructure)

  • 박광섭;김윤태
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.75-82
    • /
    • 2018
  • Large space structures exhibit different natural vibration characteristics depending on the aspect ratio of structures such as half-open angle. In addition, since the actual large space structure is mostly supported by the lower structure, it is expected that the natural vibration characteristics of the upper structure and the entire structure will vary depending on the lower structure. Therefore, in this study, the natural vibration characteristics of the dome structure are analyzed according to the natural frequency ratio by controlling the stiffness of the substructure. As the natural frequency of the substructure increases, the natural frequency of the whole structure increases similarly to the natural frequency of the upper structure. Vertical vibration modes dominate at $30^{\circ}$ and $45^{\circ}$, and horizontal vibration modes dominate at $60^{\circ}$ and $90^{\circ}$.

농업용 트랙터의 과도 진동 분석 (Transient Vibration Analysis of an Agricultural Tractor)

  • 김용준;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제26권6호
    • /
    • pp.509-516
    • /
    • 2001
  • This paper introduced some advantages of the time-frequency analysis of vibration and investigated, using the time-frequency transform, the characteristics of the transient motion of a tractor seat, which occurred during the tractor traversed over a rectangular obstacle on the flat surface. The characteristics of the short-time courier and wavelet transforms as time-frequency analysis methods were introduced and discussed to figure out which is more suitable to the analysis of the transient motions of agricultural tractors. Using each transform, transient vibration of a tractor seat was analyzed. Results of the analysis showed that the transient vibration of the seat was influenced by the natural frequencies of vertical mode of chassis, pitching mode of engine and pitching mode of cab of the tractor. The time sequence of the natural mode of tractor vibration was also revealed by the time-frequency analysis. The vibration path analysis by the time-frequency transform showed that the vibration energies transmitted from the front mounts to the seat were less than those from the rear mounts. The energy reduction ratios between the cab mounts and seat were also estimated to be about 72∼78%. The front mounts showed larger reduction than the rear mounts. However, the reduction difference between the right and left sides mounts was negligibly small. The short time Fourier transform was found to be a proper method for investigating the transient motions of farm machines and their effects on the ride vibration.

  • PDF

연료전지용 터보압축기 회전축의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis in the Shaft of Turbo-Blower for Fuel Cell)

  • 김홍건;나석찬;김성철;강영우;양균의;이희관;최문창
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.81-87
    • /
    • 2004
  • A 3-D FEM (Finite Element Method) analysis of the turbo-blower shaft attached to a fuel cell was performed using Lanczos algorithm. The modal analysis was analyzed in order to investigate natural frequency and maximum displacement for 10 times. It was found that the first mode of natural frequency is 109.1Hz with the maximum displacement of 0.16mm while the tenth mode of natural frequency is 2464Hz with the maximum displacement of 0.25mm. Consequently, the results of modal analysis of the turbo-blower for a fuel cell system show good dynamic responses.

항공기용 외부연료탱크 진동모드 측정시험 (Vibration Mode Measurement Test of External Fuel Tank for Aircraft)

  • 김현기;최현경;김성찬;박형배;안수홍;김영신
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.88-94
    • /
    • 2022
  • 진동모드 측정시험은 대상 시험체의 고유진동 특성을 측정하는 시험으로써, 측정된 고유모드 특성은 수치해석 결과와의 비교를 통해 수치해석의 신뢰성을 검증하고, 필요시 동특성 해석에 사용하는 시험체의 수치해석 모델을 보완하는데 활용된다. 본 연구에서는 진동모드 측정시험과 유한요소 모델을 이용한 수치해석을 통해서 외부연료탱크의 고유주파수와 고유모드를 각각 구하고, 그 결과를 비교하여 항공기 전기체 모델에 적용하고자 하는 외부연료탱크의 수치해석 모델에 대한 신뢰성을 검증하고자 한다. 시험체의 진동모드 측정을 위해 번지코드를 이용하여 시험체에 대한 자유경계 조건을 모사하였다. 그리고, 시험체에 3축 가속도계를 설치하고 임팩트 해머로 가진하여 시험체의 응답특성을 측정하였다. 시험결과로, 응답 가속도에 대한 주파수 응답해석을 수행한 후, 시험체의 고유주파수와 해당 진동모드를 확인하였다. 그리고, 시험과 수치해석을 통해 구해진 고유주파수와 진동모드를 비교하여 수치해석 모델에 대한 신뢰성을 검증하였다.

상시진동실험을 이용한 남해대교의 동특성 평가 (Estimation of Dynamic Characteristics of Namhae Suspension Bridge Using Ambient Vibration Test)

  • Kim, Nam-Sik;Kim, Chul-Young;Jung, Dae-Sung;Yoon, Jah-Geol
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.396.1-396
    • /
    • 2002
  • The AVT under traffic-induced vibrations was carried out on Namhae Suspension bridge in Korea. Mode shapes as well as natural frequencies up to the 15th mode were acquired exactly, and the effect of traffic mass and temperature on measured natural frequencies was investigated. The results from the AVT are compared with those from forced vibration test(FVT) and FE analysis. (omitted)

  • PDF

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

점탄성재 삽입시 볼트랩 죠인트의 동특성 해석 (An Analysis of Dynamic Characteristics of Bolted Lap Joints with Viscoelastic Layers)

  • 박명균;박세만;최영식;박상규
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.172-178
    • /
    • 2003
  • Two types of bolted lap joints, one with a viscoelastic layer and the other without the viscoelastic layer were chosen to analyze the dynamic characteristics of the joints with the mechanical properties of the bolts in the joints are considered as computational variables. The finite element method was used along with the modal testing to verify the PEM model. The results in the bolted lap joints reveal that the higher the Young's modulus for the bolts we use the higher the natural frequencies we obtain fur the joints. However, the natural frequency differences in the first and second mode are not substantial but become noticeable in the higher modes. Lower natural frequencies were obtained for the bolted lap joints with the viscoelastic layer when compared with those of the bolted lap joints without the viscoelastic layer. And the differences in the natural frequencies for the two types of joints are relatively small in the first and second mode whereas in the higher mode the differences become significant. The loss factors were observed to be significant especially in the second mode for the bolted lap joints with the viscoelastic layer.