• Title/Summary/Keyword: Natural Energy

Search Result 3,723, Processing Time 0.033 seconds

A Study on Vibration Characteristics of Flywheel Energy Storage System Using Superconducting Magnetic Bearings (초전도자기베어링을 이용한 플라이휠 에너지 저장장치의 진동특성에 관한 연구)

  • 김종수;이수훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.170-177
    • /
    • 1998
  • The purpose of superconducting magnetic bearing flywheel energy storage system(SMB-FESS) is to store unused nighttime electricity as kinetic energy and convert it to electricity during daytime. The SMB-FESS is proposed as an efficient energy storage system because there is no mechanical problems, such as friction and wear The flywheel over SMB is rotated at a high speed, 50,000rpm. The major source of energy loss in the SMB-FESS is vibration of flywheel. Therefore, the vibration characteristics of SMB-FESS should be identified. In this study, the axial/radial stiffness and damping coefficient of SMB are measured by a vibration test. Natural frequencies and natural modes of flywheel and magnet are analyzed by a finite element method. The modal analysis of system is performed using the modal parameters of each component and the measured stiffness/damping coefficient. So, natural at frequencies and mode shapes of the joined system can be obtained. According to critical speed analysis, the system has two rigid conical modes in the low speed range. Nevertheless, the system has not been affected by the critical speed in the main operating range.

  • PDF

A Study on Ammonia Formation with Nitrogen Impurity at a Natural Gas Steam Reforming Catalytic Process (소량의 질소를 포함한 천연가스 수증기 개질 반응에서 GHSV 변화에 따른 암모니아 생성 반응에 관한 연구)

  • KIM, CHUL-MIN;PARK, SANG-HYOUN;LEE, JUHAN;LEE, SANGYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.601-607
    • /
    • 2019
  • Ammonia would be formed in natural gas containing small amount of nitrogen reforming process in the process natural gas, which might damage the Pt catalyst and Prox catalyst. In the article, the effect of nitrogen contents on the formation of ammonia in the reforming process has been studied. In the experiments, Ru based and Ni based catalysts were used and the concentration of ammonia in the reformate gas at various gas hourly space velocity was measured. Experimental result shows that relatively higher ammonia concentration was measured with Ru based catalyst than with Ni based catalyst. It also shows that the concentration of ammonia increased rapidly after most of the methane converted into hydrogen. Based on the experimental results to reduce ammonia concentration it might be better to finish methane conversion at the exit position of the reforming reactor to minimize the contact time of catalyst and nitrogen with high concentration of hydrogen.

Topology Optimization Technique using Strain Energy Distributions induced by the Mode Shapes associated with Natural Frequencies (구조물의 자유진동모드로 유발되는 변형에너지 분포를 이용한 위상최적화기법)

  • Lee, Sang-Jin;Bae, Jung-Eun;Park, Gyeong-Im
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1015-1018
    • /
    • 2006
  • In this paper, new topology optimization technique is proposed. It mainly uses the strain energy distributions induced by the mode shapes associated with natural frequencies of the structure and so we can implicitly consider the dynamic characteristics of the structure in the topology optimization process. The strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. The resizing algorithm devised from the optimality criteria method is used to update the hole size of the cell existing in each finite element. The cantilever beam problem is adopted to test the proposed techniques. From numerical test, it is found to be that the optimum topology of the cantilever produced by the proposed technique has a hugh increase of natural frequency value and the technique is very effective to maximize the fundamental frequency of the structure.

  • PDF

Status for the Technology of Hydrogen Production from Natural Gas (천연가스를 이용한 수소 제조 기술 현황)

  • Bak, Young-Cheol;Cho, Kwang-Ju
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.344-351
    • /
    • 2005
  • Hydrogen energy will be considered one of the most important energy carries for the future not only as raw material of petroleum chemical industry but also as the fuel of the fuel cell. The hydrogen production based upon the water electrolysis system combined renewable energy or atomic power energy is being watched as long-term hydrogen sources. Hydrogen from fossil fuel, especially natural gas steam reforming, is the economical mass production method at this time. But the cost of $CO_2$ reduction is added in the economic analysis of hydrogen production processes. Therefore many different results are suggested from these analyses about old processes, and modified schemes are studying for the efficient development. In this review, status for the technology of hydrogen production from natural gas are summarized.

Study on Application of Shaft Box type Balcony for Improvement of Ventilation Performance in Apartment (공동주택의 환기성능 개선을 위한 Shaft Box형 발코니의 적용성 검토)

  • Roh, Ji-Woong;Kim, Gon
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, because of the continuous rise of international oil price, energy saving is strongly demanding. So, Ecological technics of architecture such as use of natural energy have been actively explored in the field of building. In the method of utilizing natural energy, the key point is to saving energy effectively as not lowering the comfort of indoor environment, various systems investigated. Many papers about double skin facade system have been reported, it is announced broadly that the system is very effective in improvement of natural ventilation and indoor thermal environment, and also protecting outdoor sound. The shaft box facade is a special form of box window construction. It consists of a system of box windows with continuous vertical shafts that extend over a number of stories to create a stack effect. The facade layout consists of an alternation of box windows and vertical shaft segments. This research investigated the natural ventilation performance of shaft box type balcony which conform the shaft box type double skin to the exiting balcony construction. First, analyzed various types of exiting apartments, proto-type was decided. By using virtual environment Program, modeling the proto-type, compared the contribution of air temperature and the effect of outdoor air cooling. by this research, we confirmed that shaft box type balcony had many possibility for improvement of indoor environment.

Effects of Natural Extracts on the Radiation-induced Pink Mutations in Tradescantia Stamen Hair Cells

  • Kim, Jin-Kyu;Kim, Yeon-Ku;Lee, Byoung-Hun;Lee, Young-Il;Shin, Hae-Shick
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.522-528
    • /
    • 1999
  • The effect of a water-soluble extract from natural materials on radiation-induced mutations was studied by means of TSH assay in Tradescantia 4430 stamen hair cells. Inflorescence cuttings, with or without pretreatments of natural extracts for 3 hours, were exposed to 1 Gy of gamma ray. Comparisons were made on the basis of pooled data during the peak interval between the mean pink mutation frequencies of the experimental groups. Pretreatments of FB or FB-I resulted in about two-fold increases of the pink mutation frequencies, compared to those of the control group. Synergism between certain fractions and radiation was a possible cause of the increased DNA damage. FB and FB-I had a radiosensitizing effects on the pink mutations in Tradescantia 4430 stamen hair cells (p<0.001). On the other hand, the extract PP in a proper concentration significantly reduced the pink mutation frequencies (p<0.05). The result means that PP has a protective effect on the radiation-induced cell damage.

  • PDF

Effects of Natural Plant Extracts and Gamma Rays on Lactobacillus Isolated from Korean Traditional Raw Rice Wine (천연 식물추출물과 감마선이 막걸리에서 분리한 유산균에 미치는 영향 연구)

  • Nam, Ji-young;Kim, Jae-Hun;Lee, Ju-Woon;Kim, Jin Kyu
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.319-323
    • /
    • 2010
  • Recently, Korean traditional raw rice wines (RRW) have received attention because they are a nutritious food with health properties. But the rapid deterioration of fermented RRW is one of the serious problems for brewing and marketing in the world beyond Korea. The goal of this study was to develop a way to enhance the quality and to lengthen the period of circulation of the RRW. A lactic acid bacterium was isolated from RRW. It was identified as Lactobacillus fermentum (98%) based on its biochemical properties, and 16S rRNA sequence. Treatments of RRW with gamma radiation and green tea extracts reduced the bacterial population except for yeasts and Lactobacillus in the RRW. This result suggested that the natural plant extracts and catechin products can be used as an effective natural storage agent.

Economic Impacts of Energy Development on Domestic Economy

  • Hojjat, Tahereh Alavi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 2014
  • New technologies and techniques to extract natural gas and gas liquids, as well as petroleum, from shale rock have greatly altered expectations for North America's capacity to produce energy products. As a result of innovations such as hydraulic fracturing, some government, industry, and academic observers have predicted that the United States will soon become energy self-sufficient and possibly become a net exporter of natural gas and petroleum. This paper will cover literature review and measure the potential impacts on economic growth and development. Fracking, renewable energy are just a few of the things that have reshaped the energy picture over the past 20 years, how much it will change in the next 20 years and the impacts on the economy will be discussed.

Interaction Energies and Forces of Biomolecules

  • Lee, Jinhyuk;Seokmin Shin;Jung, Sun-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.40-40
    • /
    • 1999
  • We propose a method where interaction energies and force components are calculated separately for each residue of biomolecules. It is found that the correlation factors obtained from the analysis of five types of force terms and one interaction energy term (main chain self-energy) can be used to predict a mutants free energy difference relative to wild type.(omitted)

  • PDF

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC (NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석)

  • Inhye Kim;Jeongjae Oh;Taesung Kim;Minsuk Im;Sunghyun Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.225-232
    • /
    • 2024
  • The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.