• Title/Summary/Keyword: Natural Energy

Search Result 3,737, Processing Time 0.036 seconds

A study of energy absorption and exposure buildup factors in natural uranium

  • Salehi, Danial;Sardari, Dariush;Jozani, M.S.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Energy absorption and exposure buildup factor have been computed for natural uranium in the energy range of 0.05-15MeV up to penetration depth of 40 mfp. Five-parameter geometric progression (G-P) fitting method has been used to compute buildup factors of uranium. The variation of energy absorption and exposure buildup factors with, penetration depth and incident photon energies for the uranium has been studied. It has been concluded that the values of energy absorption and exposure buildup factors are very large at 0.15 MeV.

Equilibrium Conditions of Methane Hydrate added Help Gases (보조가스가 첨가된 메탄 하이드레이트 상평형 조건에 대한 연구)

  • Kim, Nam-Jin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.51-58
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor.

A Study on Adoption of Alternative Cost-effectiveness Analysis Method for the DSM Investment Program and Actual Application (수요관리 투자사업에 대한 대안적 비용효과 분석 기법 도입 및 실제 적용)

  • Choi, Bong-Ha;Park, Su-Uk;Lee, Jeong-Tae;Lee, Chan-Seob
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.243-248
    • /
    • 2008
  • The purpose of this study is to introduce alternative cost-effectiveness analysis method of DSM investment programs. This alternative method is Value Test method which consider the effects of DSM investment program on customer value. And this method was applied for actual DSM investment program in natural gas domain. By utilize this method to evaluate cost-effectiveness of DSM investment programs, it is expected to make right decision to enforce and complement those programs.

  • PDF

Analysis of the Thermal Environment and Natural Ventilation for the Energy Performance Evaluation of the Double Skin System during the Summer (이중외피 시스템의 에너지성능평가를 위한 하절기 열환경 및 자연환기 분석)

  • Eom, Jung-Won;Cho, Soo;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.68-76
    • /
    • 2002
  • This paper discusses thermal and ventilation performance which might be caused by the adoption of one of specific building facade techniques, Double Skin System(DSS). One building with a prototypical DSS was selected and systematically investigated through field monitoring and computer simulation techniques. A network model of ventilation was successfully made using COMIS to evaluate ventilation performance of the system which can hardly be done by field measurements. Various operating conditions of air conditioning on/off and window opening were implemented in this type of building. Through the appropriate operation of the DSS in summer, simulation-based and experimental results implicate that it can lead to cooling energy savings.

Experimental Investigation on the Enhancement of Gas Hydrate Formation for tile Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 가스 하이드레이트 생성촉진에 대한 실험적 연구)

  • Kim Nam-Jin
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.94-101
    • /
    • 2006
  • [ $1m^3$ ] solid hydrate contains up to $200m^3$ of natural gas, depending on pressure and temperature. Such large volume of natural gas hydrate can be utilized to store and transport large quantity of natural gas in a stable condition. So, in the present investigation, experiments carried out for the formation of natural gas hydrate governed by pressure, temperature, and gas compositions, etc.. The results show that the equilibrium pressure of structure II natural gas hydrate) is approximately 65% lower and the solubility is approximately three times higher than structure I methane hydrate). Also, the subcooling conditions of the structure I and II must be above 9K and 11K in order to form hydrate rapidly regardless of gas components, but the pressure increase is more advantageous than the temperature decrease in order to increase the gas consumption. And utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

  • PDF

Carbonaceous Media for Vehicular Natural Gas Storage (자동차용 천연가스 저장을 위한 탄소매질)

  • Moon, Hee
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Compressed natural gas (CNG) has been used as a vehicular fuel compressed at 24.8 MPa because the energy density of natural gas is extremely low compared with gasoline. Thus it has problems in both safety and cost for multiple stage compression. For these reasons the use of adsorbed natural gas (ANG) has been pursued since the storage of natural gas is possible at a relatively low pressure. The present target is to obtain media to store natural gas at 3.5 MPa as ANG that ensures the comparable energy density of CNG, giving approximately one-fourth the driving range of an equivalent volume gasoline tank. In this review, the recent development of carbon media, their characteristics, and practical applications for natural gas storage are introduced and some recommendations are also suggested.

Changes in Dynamic Characteristics of Monopile-Type Offshore Structures According to Tidal Environments and Boundary Conditions (다양한 조류 환경 및 경계 조건에 따른 모노파일형 해상구조물의 동특성 변화 분석)

  • Jung, Byung-Jin;Park, Jong-Woong;Yi, Jin-Hak;Park, Jin-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • Because a change in the natural frequencies of a structure indicates structural health problems, monitoring the natural frequencies crucial. Long-term measurement for the Uldolmok tidal current power plant structure has shown that its natural frequencies fluctuate with a constant cycle twice a day. In this study, lab-scale tests to investigate the causes of these natural frequency fluctuations were carried out in a circulating water channel. Three independent variables in the tests that could affect the fluctuation of the natural frequencies were the water level, current velocity, and boundary condition between the specimen and the bottom of the circulating water channel. The experimental results were verified with numerical ones using ABAQUS. It was found that the fluctuation of the natural frequencies was governed by a decrease in stiffness due to the boundary condition much more than the effect of added mass. In addition, it was found that the natural frequency would decrease with an increase in the tidal current velocity because of its nonlinearity when the boundary condition was severely deteriorated due to damage.

Examination of validation for equivalent gas to replace natural gas (천연가스를 모사하는 등가가스의 유효성 검토)

  • Kim, Jong-Min;Lee, Seungro;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • In order to estimate the combustion characteristics and the gas interchangeability for natural gas with various compositions per each production area, equivalent gas are using to replace natural gas. It is known that an equivalent gas has the same the heating value, the compression factor, the relative density, CO emission and the burning velocity as the original natural gas. However, it is not reported that the flame shape and thermal efficiency and NOx emission by real gas appliance. In this study, equivalent gas was examined the validation to replace natural gas. The CO emission the burning velocity and the flame temperature were reconfirmed, and the flame shape, the NOx emission and the thermal efficiency were numerically and experimentally investigated. As results, there was not a large difference between natural gas and equivalent gas. This result demonstrated that there was no problem using equivalent gas to replace natural gas.

NATURAL CIRCULATION ANALYSIS CONSIDERING VARIABLE FLUID PROPERTIES WITH THE CUPID CODE (CUPID 코드의 유체 물성치 변화를 고려한 자연대류 해석)

  • Lee, S.J.;Park, I.K.;Yoon, H.Y.;Kim, J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.14-20
    • /
    • 2015
  • Without electirc power to cool down the hot reactor core, passive systems utilizing natural circulation are becoming a big specialty of recent neculear systems after the severe accident in Fukusima. When we consider the natural circulation in a pool, thermal mixing phenomena may start from single phase circulation and can continue to two phase condition. Since the CUPID code, which has been developed for two-phase flow analysis, can deal with the phase transition phenomena, the CUPID would be pertinent to natural convection problems in single- and two-phase conditions. Thus, the CUPID should be validated against single- and two-phase natural circulation phenomena. For the first step of the validation process, this study is focused on the validation of single-phase natural circulation. Moreover, the CUPID code solves the fluid properties by the relationship to pressure and temperature from the steam table considering non-condensable gas effects, so that the effects from variable properties are included. Simple square thermal cavity problems are tested for laminar and turbulent conditions against numerical and experimental data. Throughout the investigation, it is found that the variable properties can affect the flow field in laminar condition, but the effect becomes weak in turbulence condition, and the CUPID code implementing steam table is capable of analyzing single phase natural circualtion phenomena.

Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana

  • Jeong, Mi-Suk;Hwang, Eun-Young;Jin, Gyoung-Ean;Park, So-Young;Zulfugarov, Ismayil S.;Moon, Yong-Hwan;Lee, Choon-Hwan;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1479-1484
    • /
    • 2010
  • Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). Chlorophyll binding by the photosystem II subunit S protein, PsbS, was found to be necessary for energy-dependent quenching (qE), the major energy-dependent component of non-photochemical quenching (NPQ) in Arabidopsis thaliana. It is proposed that PsbS acts as a trigger of the conformational change that leads to the establishment of nonphotochemical quenching. However, the exact structure and function of PsbS in PSII are still unknown. Here, we clone and express the recombinant PsbS gene from Arabidopsis thaliana in E. coli and purify the resulting homogeneous protein. We used various biochemical and biophysical techniques to elucidate PsbS structure and function, including circular dichroism (CD), fluorescence, and DSC. The protein shows optimal stability at $4^{\circ}C$ and pH 7.5. The CD spectra of PsbS show that the conformational changes of the protein were strongly dependent on pH conditions. The CD curve for PsbS at pH 10.5 curve had the deepest negative peak and the peak of PsbS at pH 4.5 was the least negative. The fluorescence emission spectrum of the purified PsbS protein was also measured, and the ${\lambda}_{max}$ was found to be at 328 nm. PsbS revealed some structural changes under varying temperature and oxygen gas condition.