• Title/Summary/Keyword: Natural Coordinate

Search Result 172, Processing Time 0.016 seconds

Genetic Diversity and Relationship of the Walleye Pollock, Theragra chalcogramma Based on Microsatellite Analysis (Microsatellite marker 분석을 이용한 명태(Theragra chalcogramma) 5 집단의 유전적 다양성 및 유연관계 분석)

  • Dong, Chun Mae;Kang, Jung-Ha;Byun, Soon-Gyu;Park, Kie-Young;Park, Jung Youn;Kong, Hee Jeong;An, Cheul Min;Kim, Gun-Do;Kim, Eun-Mi
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1237-1244
    • /
    • 2016
  • A comprehensive analysis of the genetic diversity and relationship of the cold-water fishery walleye pollock (Theragra chalcogramma), the most abundant economically important fishery resource in the East sea of Korea, has not been carried out, despite its importance in Korea. The present study assessed the genetic diversity and relationship between five walleye pollock populations (Korean population, Russian population, USA population, and Japanese populations) of T. chalcogramma using eight microsatellite DNA (msDNA) markers to provide the scientific data for the preservation and management of the Pollock fishery resource. The results of the analysis of 186 individuals of the Pollock revealed a range of 7.13-10.63 numbers of alleles (mean number of alleles=9.05). The means of observed heterozygosity ($H_O$), expected heterozygosity ($H_E$) were 0.732 and 0.698, respectively. The results of genetic distance, Pairwise $F_{ST}$, UPGMA (UPGMA: un-weighted pair-group method with an arithmetical average) (the phylogenetic tree), PCA (PCA: Principal Coordinate analysis) analysis pointed to significant differences between the Korean population, Russian population, USA population, and Japanese populations, although small (p<0.05). These results shed light on the genetic diversity and relationships of T. chalcogramma and can be utilized for research on the evaluation and conservation of Korean T. chalcogramma as genetic resources.

Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell (서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.200-208
    • /
    • 2011
  • Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.