Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.11.1237

Genetic Diversity and Relationship of the Walleye Pollock, Theragra chalcogramma Based on Microsatellite Analysis  

Dong, Chun Mae (Biotechnology research division, National Institute of Fisheries Science (NIFS))
Kang, Jung-Ha (Biotechnology research division, National Institute of Fisheries Science (NIFS))
Byun, Soon-Gyu (Aquaculture Industry Division, East Sea Fisheries Research Institute NIFS)
Park, Kie-Young (Department of Marine Biology, Gangneung-Wonju National University)
Park, Jung Youn (Biotechnology research division, National Institute of Fisheries Science (NIFS))
Kong, Hee Jeong (Biotechnology research division, National Institute of Fisheries Science (NIFS))
An, Cheul Min (Biotechnology research division, National Institute of Fisheries Science (NIFS))
Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Kim, Eun-Mi (Biotechnology research division, National Institute of Fisheries Science (NIFS))
Publication Information
Journal of Life Science / v.26, no.11, 2016 , pp. 1237-1244 More about this Journal
Abstract
A comprehensive analysis of the genetic diversity and relationship of the cold-water fishery walleye pollock (Theragra chalcogramma), the most abundant economically important fishery resource in the East sea of Korea, has not been carried out, despite its importance in Korea. The present study assessed the genetic diversity and relationship between five walleye pollock populations (Korean population, Russian population, USA population, and Japanese populations) of T. chalcogramma using eight microsatellite DNA (msDNA) markers to provide the scientific data for the preservation and management of the Pollock fishery resource. The results of the analysis of 186 individuals of the Pollock revealed a range of 7.13-10.63 numbers of alleles (mean number of alleles=9.05). The means of observed heterozygosity ($H_O$), expected heterozygosity ($H_E$) were 0.732 and 0.698, respectively. The results of genetic distance, Pairwise $F_{ST}$, UPGMA (UPGMA: un-weighted pair-group method with an arithmetical average) (the phylogenetic tree), PCA (PCA: Principal Coordinate analysis) analysis pointed to significant differences between the Korean population, Russian population, USA population, and Japanese populations, although small (p<0.05). These results shed light on the genetic diversity and relationships of T. chalcogramma and can be utilized for research on the evaluation and conservation of Korean T. chalcogramma as genetic resources.
Keywords
Genetic diversity; microsatellite; relationship; Theragra chalcogramma;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stenvik, J., Wesmajervi, M. S., Fjalestad, K. T., Damsgard, B. and Delghandi, M. 2006. Development of 25 gene-associated microsatellite markers of Atlantic cod (Gadus morhua L.). Mol. Ecol. Notes 6, 1105-1107.   DOI
2 Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17, 6463-6471.   DOI
3 Van Dijk, H. and Van Delden, W. 1981. Genetic variability in Plantago species in relation to their ecology. 1. Genetic analysis of the allozyme variation in P. major subspecies. Theor. Appl. Genet. 60, 285-290.   DOI
4 Wesmajervi, M. S., Tafese, T., Stenvik, J., Fjalestad, K. T., Damsgard, B and Delghandi, M. 2007. Eight new micro satellite markers in Atlantic cod (Gadus morhua L.) Derived from an enriched genomic library. Mol. Ecol. Notes 7, 138-140.
5 Weir, B. S. and Cockerham, C. C. 1984. Estimating F-sta tistics for the analysis of population structure. Evolution 38, 1358-1370.   DOI
6 Nei, M. 1972. Genetic distance between populations. Am. Nat. 106, 283-292.   DOI
7 NFRDI. 2010. Ecology and fishing ground of fisheries resources in Korean waters. National Fisheries Research and Development Institute, Busan, Korea. 405.
8 NFRDI. 2010. Korean Coastal and Offshore Fishery Census. 283-286.
9 Oh, T. G., Sakuramoto, K. and Lee, S. G. 2004. The Relationship between spawning area water temperature and catch fluctuation of walleye Pollock in the East Sea/Sea of Japan. J. Kor. Soc. Fish. Res. 6, 1-13.
10 Olsen, J. B., Merkouris, S. E. and Seeb, J. E. 2002. An examination of spatial and temporal genetic variation in walleye pollock (Theragra chalcogramma) using allozyme, mitochondrial DNA, and microsatellite data. Fish. Bull. 100, 752-764.
11 Seo, H., Kim, S., Seong, K. and Kang, S. 2006. Variability in scale growth rates of chum salmon (Oncorhynchus keta) in relation to climate changes in the late 1980s. Prog. Oceanogr. 68, 205-216.   DOI
12 Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy: The principles and practice of numerical classification. W. H. Freeman, San Francisco.
13 Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485-486.   DOI
14 Grant, W. S., Spies, I. B. and Canino, M. F. 2006. Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma. J. Hered. 97, 571-580.   DOI
15 Jarne, P. and Lagoda, P. J. G. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424-429.   DOI
16 Kang, S. K., Park, J. H. and Kim, S. A. 2013. Size-class Estimation of Number of Walleye Pollock Theragra chalcogrammal Caught in the Southwestern East Sea during the 1970s-1990s. Kor. J. Fish. Aquat. Sci. 46, 445-453.
17 Kim, E. M., Kang, H. S., Kang, J. H., Kim, D. G., An, C. M., Lee, H. W. and Park, J. Y. 2015. Genetic relationship of the randfish, Arctoscopus japonicas inhabit in five different areas of Korea and Japan based on mitochondrial DNA and microsatellite analyses. J. Life Sci. 25, 1204-1213.   DOI
18 Kim, M. J., An, H. S. and Choi, K. H. 2010. Genetic characteristics of Pacific cod populations in Korea based on microsatellite markers. Fish. Sci. 76, 595-603.   DOI
19 Kim, S. and Kang, S. 1998. The status and research direction for fishery resources in the East Sea/Sea of Japan. J. Kor. Soc. Fish. Res. 1, 44-58.
20 Kim, S., Zhang, C. I., Kim, J. Y., Oh, J. H., Kang, S. and Lee, J. B. 2007. Climate variability and its effects on major fisheries in Korea. Ocean. Sci. J. 42, 179-192.   DOI
21 Park, S. K. and OK, Y. S. 1986. Bio-economic research in fishery resouree management; walleye Pollock. Nongchongyungje 9, 59-68.
22 Peakall, R. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295.   DOI
23 Perez-Enriquez, R., Takagi, M. and Taniguchi, N. 1999. Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture 173, 413-423.   DOI
24 Rousset, F. 2008. GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103-106.   DOI
25 Sekino, M., Saitoh, K., Yamada, T., Kumagai, A., Hara, M. and Yamashita, Y. 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys oliaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture 221, 255-263.   DOI
26 Li, Q., Yu, H. and Yu, R. 2006. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 259, 95-102.   DOI
27 Liu, Z. 2011. Genomic variations and marker technologies for genome-based selection. In: Liu, Z. (ed.), Next Generation Sequencing and Whole Genome Selection in Aquaculture. WileyBlackwell, Oxford, U. K.
28 FishBase. 2015. Database for walleye Pollock. Retrieved from http;//www.FishBase.org/Summary/speciesSummary.php?ID=318&AT=walleye+Pollock.
29 Liu, Z. J. and Cordes, J. F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1-37.   DOI
30 Bark, B. H., Hue, J. B. and Kim, H. K. 1978. Age and growth of Alaska pollack, Theragra Chalcogramma, in the Eastern Sea of Korea. Bulletin of National Fisheries Research and Development Institute. 20, 33-42.
31 Bark, B. H., Hue, J. B. and Kim, H. K. 1978. Spawning and Maturity of Alaska Pollack, Theragra chalcogramma (PALLAS), in the Eastern Sea of Korea. Bulletin of National Fisheries Research and Development Institute. 22, 33-38.
32 O'reilly, P. T., Canino, M. F., Bailey, K. M. and Bentzen, P. 2000. Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye Pollock and other gadoids. J. Fish Biol. 56, 1074-1086.   DOI
33 O'Reilly, P. T., Canino, M. F., Bailey, K. M. and Bentzen, P. 2004. Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye Pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol. Ecol. 13, 1799-1814.   DOI
34 Park, H. H. and Yoon, G. D. 1996. Prediction of walleye Pollock, Theragra chalcogramma, landings in Korea by time series analysis : AIC. Bull. Kor. Soc. Fish. Tech. 32, 235-240.
35 Koljonen, M. L., Tahtinen, J., Saisa, M. and Koskiniemi, J. 2002. Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture 212, 6992.
36 Langella, O. 2002. POPULATIONS 1.2.29. Population genetic software (individuals or populations distances, phylogenetic trees), http://bioinformatics.org/-tryphon/populations.
37 Li, Q., Park, C., Endo, T. and Kijima, A. 2004. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquaculture 235, 207-222.   DOI
38 Beacham, T. D., Lapointe, M., Candy, J. R., Miller, K. M. and Withler, R. E. 2004. DNA in action: rapid application of DNA variation to sockeye salmon fisheries management. Conserv. Gen. 5, 411-416.   DOI
39 Boudry, P., Collet, B., Cornette, F., Hervouet, V. and Bonhomme, F. 2002. High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204, 283-296.   DOI
40 Canino, M. F., O'Reilly, P. T., Hauser, L. and Paul, B. 2005. Genetic differentiation in walleye pollock (Theragra chalcogramma) in response to selection at the pantophysin (Panl) locus. Can. J. Fish. Aquat. Sci. 62, 2519-2529.   DOI
41 Canino, M. F., Spies, I. S. and Hauser, L. 2005. Development and characterization of novel di- and tetranucleotide microsatellites markers in Pacific cod (Gadus macrocephalus). Mol. Ecol. Notes 5, 908-910.   DOI
42 DeWoody, J. A. and Avise, J. C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol. 56, 461-473.   DOI
43 Evans, B., Bartlett, J., Sweijd, N., Cook, P. and Elliott, N. G. 2004. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture 233, 109-127.   DOI
44 Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin ver.3. 0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47-50.