• 제목/요약/키워드: Natural Convection Heat Transfer

Search Result 446, Processing Time 0.101 seconds

Three-dimensional natural convection cooling of the electronic device with the effects of convective heat dissipation and vents (전자장비에서 벽면의 대류열방출 및 통기구의 효과를 고려한 3차원 자연대류 냉각)

  • ;;;Baek, Chang-In;Lim, Kwang-Ok
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3072-3083
    • /
    • 1995
  • The numerical simulation on the three-dimensional natural convection heat transfer in the enclosure with heat generating chip is performed, and the effects of convective heat loss and vents are also examined. The effects of the Rayleigh number and outer Nusselt number (Nu$_{0}$) on the maximum chip temperature and the fractions of heat loss from the hot surfaces are investigated. The results show that conduction through the substrate is dominant in heat dissipation. With the increase of Rayleigh number, heat dissipation through the chip surfaces increases and heat loss through the substrate decreases. Maximum dimensionless temperature with vents is found to decrease about 40% compared to the one without vents at Nu$_{0}$=0.l. It is also shown that effects of size and location of the vents are negligible.ble.

NUMERICAL ANALYSIS FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE HAVING A VERTICAL THERMAL GRADIENT WITH A SQUARE INSULATOR INSIDE

  • Lee, Jae-Ryong;Park, Il-Seouk
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.283-296
    • /
    • 2012
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body in the center is studied. Three different Prandtl numbers (0.01, 0.7 and 7) are considered for the investigation of the effect of the Prandtl number on natural convection. Adiabatic boundary conditions are employed for the side walls. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10_3$ to $10_6$. It had been experimentally reported that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. It was found that when Ra=$10_6$, only the case for intermediate Pr (=0.7) reached a non-changing steady state and the low and high Pr number cases (Pr=0.01 and 7) showed a periodically oscillatory fashion hydrodynamically and thermally. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers are presented to show the overall heat transfer characteristics in the system. Further, the isotherms and streamline distributions are presented in detail to compare the physics related to their thermal behavior.

NUMERICAL STUDY FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE WITH SQUARE ADIABATIC BODY (사각 단열체가 존재하는 밀폐계 내부에서 Pr수 변화에 따른 자연대류 현상에 대한 수치적 연구)

  • Lee, Jae-Ryong
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2011
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body at its centered area was studied. Three different Prandtl numbers (0.01, 0.7 and 7) were considered for an effect of the Prandtl number on natural convection. A two-dimensional solution for unsteady natural convection was obtained, using Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10^4$ to $10^6$. It had been experimentally and numerically reported [1,2] that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers was presented to show the overall heat transfer characteristics in the system. And also, the isotherms and streamline distributions were presented in detail to compare the physics related to their thermal behavior.

A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure (차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구)

  • 박경우;이주형;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Two- and three-dimensional experiments for oxide pool in in-vessel retention of core melts

  • Kim, Su-Hyeon;Park, Hae-Kyun;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1405-1413
    • /
    • 2017
  • To investigate the heat loads imposed on a reactor vessel through the natural convection of core melts in severe accidents, mass transfer experiments were performed based on the heat transfer/mass transfer analogy, using two- (2-D) and three-dimensional (3-D) facilities of various heights. The modified Rayleigh numbers ranged from $10^{12}$ to $10^{15}$, with a fixed Prandtl number of 2,014. The measured Nusselt numbers showed a trend similar to those of existing studies, but the absolute values showed discrepancies owing to the high Prandtl number of this system. The measured angle-dependent Nusselt numbers were analyzed for 2-D and 3-D geometries, and a multiplier was developed that enables the extrapolation of 2-D data into 3-D data. The definition of $Ra^{\prime}_H$ was specified for 2-D geometries, so that results could be extrapolated for 3-D geometries; also, heat transfer correlations were developed.

Numerical Study On Combined Natural Convection-Radiation In Partially Open Square Compartments with A Heater (발열체가 있는 열린 공간내에서의 자연대류-복사열전달 현상에 관한 수치적 연구)

  • 손봉세;한규익;서석호;이재효;김태국
    • Fire Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.10-19
    • /
    • 1995
  • Study on combined natural convection-radiation In partially open square enclosures filled with absorbing-anisotropic scattering media is performed. A heater block located in the enclosure causes the natural circulation of the fluid in the enclosure which results In significant in-flow of the cold fluid through the partially open wall. Four different locations of the heater are considered to observe the effect of the heater locations on the resulting heat transfer. Results obtained from the combined convection-radiation analyses show much stronger circulation of t he fluid inside the enclosure as compared to those obtained from the pure convection analyses. As the ratio of the open area is Increased, the inflow of the cold fluid and the circulation of the fluid inside the enclosure is increased causing lower fluid temperature Inside the enclosure. It is shown that the location of the heater influences the circulation and heat transfer significantly by showing stronger circulations and more uniform temperature distributions for the cases where the heater is located on the bottom wall as compared to those for the cases where the heater is located on the upper part wall of the enclosure. For pure absorbing medium, the expected circulation in the fluid is relatively week as compared to those with absorbing-scattering medium due to the smaller wall heating as the radiant heat is used to heat the fluid instead. The forward anisotropic scattering phase function is shown to increase the fluid circulation further as compared to the isotropic scattering medium.

  • PDF

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

Numerical Simulation of Natural Convection in Horizontal Enclosure with Heat-Generating Conducting Body (발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구)

  • Lee Jae Ryong;Ha Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.441-452
    • /
    • 2005
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}\;to\;10^{6}.$ Multi-domain technique is used to handle square- shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

SORET, HALL CURRENT, ROTATION, CHEMICAL REACTION AND THERMAL RADIATION EFFECTS ON UNSTEADY MHD HEAT AND MASS TRANSFER NATURAL CONVECTION FLOW PAST AN ACCELERATED VERTICAL PLATE

  • VENKATESWARLU, M.;LAKSHMI, D. VENKATA;RAO, K. NAGA MALLESWARA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.203-224
    • /
    • 2016
  • The heat and mass transfer characteristics of the unsteady hydromagnetic natural convection flow with Hall current and Soret effect of an incompressible, viscous, electrically conducting, heat absorbing and optically thin radiating fluid flow past a suddenly started vertical infinite plate through fluid saturated porous medium in a rotating environment are taken into account in this paper. Derivations of exact analytical solutions are aimed under different physical properties. The velocity, concentration and temperature profiles, Sherwood number and Nusselt number are easily examined and discussed via the closed forms obtained. Soret effect and permeability parameter tends to accelerate primary and secondary fluid velocities whereas hall current, radiation and heat absorption have reverse effect on it. Radiation and heat absorption have tendency to enhance rate of heat transfer at the plate. The results obtained here may be further used to verify the validity of obtained numerical solutions for more complicated transient free convection fluid flow problems.