• Title/Summary/Keyword: Natural Convection Heat Transfer

Search Result 446, Processing Time 0.025 seconds

Effects of surface radiation on the insulation for mechanical system (표면복사특성이 단열성능에 미치는 영향)

  • Oh, Dong-Eun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1006-1011
    • /
    • 2006
  • In this study, a rational procedures for estimation of insulation thickness for condensation control or personnel protection has been investigated. Both horizontal pipe and vertical wall configuration are included. Design parameters are pipe diameter or, height of the wall, thermal conductivity, emissivity, and operating temperatures. The results Indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient. Adequate revision of specifications or standards has been also suggested.

  • PDF

Free Convective Heat Transfer in a Vertical Channel with Heat Source at the Wall (벽에서 열원이 있는 수직채널안의 자연대류열전달)

  • Pak, Hi-Yong;Doo, Min-Soo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.108-117
    • /
    • 1985
  • In this study, a numerical analysis was performed for the natural convection heat transfer in a vertical channel which was consisted of two finite-thickness vertical walls with heat source. The ratio of the thermal conductivity of wall to air played an important role in the analysis. The case for which one side wall has protrusion resistances was also examined. The governing equations for the system was discretized by control volume formulation and solved by SIMPLE method. As the result of this study, it was found that the uniform heat flux boundary condition could be applied when the conductivity ratio was below approximately 50 and the uniform temperature boundary condition could be used when the conductivity rat io was over approximately 15,000. However, when the conductivity ratio was between 50 and 15,000, the thermal conductivity ratio value should be considered for the analysis. It was also found that the existence of protrusion resistance influenced the thermal field up to the distance of 3-4 times of the protrusion length.

  • PDF

Natural Convection Heat Transfer and Flow Characteristics in a Square Enclosure with an Isolated Heat-Generating Innerboby (고립된 발열물체를 가지는 정사각형 밀폐공간 내에서의 자연대류 열전달 및 유동 특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.360-367
    • /
    • 1984
  • 본 연구에서는 F=1/4때 및 F=4일때 각각 Fx 및 Fy가 변하는 율을 동일하게 선택하였다. 따라서 F=1/4때의 Fx값은 중력의 방향을 90˚회전 시킬때의 경우인 F=4 일 때의 Fy값과 동일하여진다.

Heat Transfer Characteristics on Toroidal Convection Loop with Nanofluids (나노유체 토로이달 자연대류 루프에서의 열전달 특성)

  • Jang, Ju-Chan;Rhi, Seok-Ho;Lee, Chung-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.235-241
    • /
    • 2009
  • Experimental studies on single-phase toroidal circulation loop(thermosyphon) have been performed in the present study with Ag-nanofluids as a working fluids. The present paper deals with an experimental study on the heat transfer behavior of single-phase toroidal loop. Toroidal loop charged with nanofluid has been constructed and a number of tests have been carried out. Different geometric parameter, e.g., orientation has been investigated. The tests were conducted employing two fluids: distilled water and Ag-nanofluid of various volume concentrations. The experiments at Rayleigh number from $10^5$ to $10^6$ showed a systematic and slight deterioration in natural convective heat transfer. It was observed that the deterioration due to the particle concentration was in the range of 5-10%. At a given particle concentration of 0.05%, abrupt decrease in the Nusselt number and the Raleigh number was observed. The present study with toroidal loop shows that the application of nanofluids for heat transfer intensification should not be decided only by the effective thermal conductivity with increasing particle concentration.

The Effect of Coolant Boiling on the Molten Metal Pool Heat Transfer with Local Solidification

  • Cho, Jea-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.34-45
    • /
    • 2000
  • This study is concerned with the experimental test and numerical analysis of the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. In the test, the metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Experiments were performed by changing the test section bottom surface temperature of the metal layer and the coolant injection rate. The two-phase boiling coolant experimental results are compared against the dry test data without coolant or solidification of the molten metal pool, and against the crust formation experiment with subcooled coolant. Also, a numerical analysis is performed to check on the measured data. The numerical program is developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. The present empirical test and numerical results of the heat transfer on the molten metal pool are apparently higher than those without coolant boiling. This is probably because this experiment was performed in concurrence of solidification in the molten metal pool and the rapid boiling of the coolant. The other experiments were performed without coolant boiling and the correlation was developed for the pure molten metal without phase change.

  • PDF

Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material (상변화물질의 대류유동 및 열전달 현상에 관한 연구)

  • Shon, Sang-Suk;Lee, Chae-Moon;Lee, Jae-Heon;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

Effects of the Inclined Angles of Channel on Thermal Stability of Electronic Components (채널의 경사각이 전자부품의 열적 안정성에 미치는 영향)

  • 추홍록;상희선;유재환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • An experimental study was carried out to investigate the effects of inclined angles of channel on thermal stability of electronic components. In this study, it is focused on the natural convection heat transfer from an inclined parallel channel with discrete protruding heat sources. The material used for the inclined parallel channel was epoxy-resin, while air as the cooling fluid. Heat transfer phenomena for inclined angles of $\psi$=$15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$ and for the range of $9.52{\times}10^5/ were analyzed. The thermal fields in the channel were visualized by Mach-Zehnder interferometer. Also, local temperatures were measured by thermocouples along the channel wall and heat sources surface. As a result, for the range of $4.29{\times} 10^5/, a useful correlation of mean Nusselt number was proposed as a function of modified channel Rayleigh number.

  • PDF

Study of Natural Convection of Magnetic Fluid in Cubic Cavity (정방형관 내에서 자성유체의 자연대류현상에 대한 수치적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon;Seo, Lee-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.637-646
    • /
    • 2013
  • This study aims to numerically investigate the natural convection characteristics of a magnetic fluid in a cubic cavity. The governing equations of the magnetic fluid are solved using the Generalized-Simplified Marker and Cell Method (GSMAC). The natural convection and heat transfer characteristics of the magnetic fluid were analyzed by varying the intensity and direction of the magnetic field. As a result, it was found that the natural convection characteristics were controlled by the intensity and direction of the magnetic field, and the mean Nusselt numbers were minimized at a vertical intensity of H=-4000 and horizontal intensity of H=12000 of the magnetic field. In addition, the mean Nusselt numbers increased with the intensities of the magnetic field, regardless of the direction of the magnetic field.

Numerical Study of Natural Convection in a Square Enclosure with an Inner Circular Cylinder for Rayleigh Number of 107 (107의 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Yu, Dong-Hun;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.739-747
    • /
    • 2010
  • Numerical calculations are carried out for evaluating the natural convection induced by the temperature difference between a hot inner circular cylinder and a cold outer square enclosure. A two-dimensional solution for unsteady natural convection is obtained by using the finite volume method to model an inner circular cylinder that was designed by using the immersed boundary method (IBM) for a Rayleigh number of $10^7$. In this study, we investigate the effect of the location ($\delta$) of the inner cylinder, which is located along the vertical central axis of the outer enclosure, on the heat transfer and fluid flow. The natural convection changes from unsteady to steady state depending on the $\delta$. The two critical lower bound and upper bound positions are ${\delta}_{C,L}$ = 0.05 and ${\delta}_{C,U}$ = 0.18, respectively. Within these defined bounds, the thermal and flow fields are in steady state.

Effects of Soft Steam Treatments on Quality Characteristics of Potatoes (감자의 품질특성에 대한 저온스팀 열처리 방식의 효과)

  • Cheigh, Chan-Ick;Lee, Jin-Hee;Chung, Myong-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • This paper examines the effects of various methods of soft steaming(i.e., forced convection-boiler, forced convection-fan, and natural convection) on the quality of potatoes. In particular, the paper investigates the effects of cooking conditions (the steaming method, the treatment time, and the temperature) on the color(L, a, b), moisture content, texture profile, and ascorbic acid of potatoes. The results indicate that not only the cooking method, the treatment time, and the temperature but also the heat transfer mechanism had considerable influence on potato quality. In addition, natural convection steaming was superior to other treatment methods in terms of nutrient retention and texture maintenance. The results of this study should be useful for establishing commercial standards for processing potatoes and improving the quality of thermally processed foods.