• 제목/요약/키워드: Natural Aggregate

검색결과 534건 처리시간 0.027초

순환잔골재의 다량 사용에 따른 모르타르의 특성 (Characteristic of Cementitious Mortar Using High Volume of Recycled Fine Aggregate)

  • 김상철;박도국;육근창
    • 한국건설순환자원학회논문집
    • /
    • 제4권3호
    • /
    • pp.235-242
    • /
    • 2016
  • 본 연구에서는 순환골재의 다량활용 일환으로 품질이 천연골재에 비해 매우 열악하고 관리가 어려운 것으로 알려져 있는 순환잔골재 만을 사용하여 그 치환률에 따른 모르타르의 성상변화에 대해 검토하였다. 실험결과, 골재 자체의 입도는 표준입도분포 범위를 벗어났고 조립률이 다소 높게 나타났다. 또한 모르타르로 제작한 경우, 완전히 제거되지 않은 시멘트페이스트의 다공성과 흡수성으로 인해 유동성 및 공기량 저하, 건조수축량 증가 등 불리한 조건들이 나타났지만, 강도 측면에서는 천연잔골재를 사용한 모르타르의 강도를 상회하는 결과가 나타나 물-시멘트비 조정과 화학혼화제의 적절한 사용을 통해 목표로 하는 일반강도 이상의 강도확보가 가능하며, 프리캐스트 콘크리트 제품에는 순환잔골재의 다량 사용이 가능한 것으로 나타났다.

설계기준 강도별 순환골재 콘크리트의 탄산화 특성 (Carbonation Properties of Recycled Aggregate Concrete by Specified Concrete Strength)

  • 이준;이봉춘;조영근;박광민;정상화
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.85-93
    • /
    • 2017
  • 본 연구에서는 국내에서 생산되고 있는 콘크리트용 순환 굵은골재 및 순환잔골재를 사용하여 콘크리트의 설계기준 강도(21, 35, 50MPa) 및 순환골재의 혼입조건 변화가 콘크리트의 탄산화 거동에 미치는 영향을 분석하였다. 실험결과 순환 굵은골재의 혼입률 변화에 따른 콘크리트의 슬럼프는 순환골재를 혼입하지 않은 경우에 비해 동등하거나 양호한 유동성을 나타내는 것으로 나타났으며, 순환 잔골재를 혼입한 경우는 혼입률이 증가함에 따라 슬럼프가 감소되는 결과를 나타냈다. 또한, 순환 굵은골재 및 순환 잔골재의 혼입률이 증가할수록 콘크리트의 압축강도는 감소하는 것으로 나타났으며, 순환골재 혼입률이 50%를 초과할 경우 급격한 강도 감소 경향을 나타냈다. 그리고 탄산화 깊이는 모든 순환골재 종류에서 혼입률이 증가함에 따라 최대 40%까지 증가하는 결과를 나타냈으며 낮은 강도 수준의 콘크리트 일수록 순환골재 활용에 따른 탄산화 저항성 저하 정도가 큰 것으로 나타났다. 그리고 콘크리트의 압축강도가 증가할수록 순환골재 혼입에 따른 영향은 감소되어, 고강도 영역에서는 일반 콘크리트와 유사한 탄산화 특성을 발현하는 것으로 분석되었다. 따라서 순환골재를 콘크리트용 재료로 대량 활용하기 위해서는 콘크리트의 탄산화 저항성의 개선 위한 혼화재료의 적용 또는 배합설계상 조정을 통한 강도의 개선 등이 필요할 것으로 판단된다.

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.

인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구 (The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate)

  • 최세진;김도빈;이경수;김영욱
    • 한국건축시공학회지
    • /
    • 제19권4호
    • /
    • pp.313-322
    • /
    • 2019
  • 본 연구는 최근 사용량이 증대하고 있는 저시멘트 배합을 대상으로 국내생산 인공경량 잔 굵은골재의 혼합비율에 따른 경량콘크리트의 물성 및 강도특성을 비교 검토한 것으로서 실험결과, 프리웨팅 시간이 24시간 증가할 경우 모르타르 플로우값이 약 3~5% 감소하는 것으로 나타났으며 경량잔골재 사용에 의해 모르타르 배합에서 약 10.4%의 기건단위질량 감소효과를 얻을 수 있는 것으로 나타났다. 또한 경량굵은골재의 혼합비율에 따른 경량콘크리트의 기건단위질량은 5~10mm 크기인 LWG10 경량굵은골재의 혼합비율이 높아질수록 선형적으로 기건단위질량이 증가하였으며 LWG10 경량굵은골재를 혼합할 경우 LWG10 혼합비율에 관계없이 재령 7일에 약 30~31MPa 수준의 유사한 압축강도를 발현하였다.

수도권 부순모래의 품질현황 및 부순모래 대체율에 따른 콘크리트의 특성에 관한 연구 (An Experimental Study on the Properties of Crushed Sand in Capital Region and Concrete according to the Replacement Ratio of Crushed Sand)

  • 최세진;이성연;여병철;김무한
    • 한국건축시공학회지
    • /
    • 제5권1호
    • /
    • pp.63-68
    • /
    • 2005
  • Generally, aggregate may limit the workability, strength and durability of concrete, and good concrete cannot be made with aggregate of bad property including low strength, bad shape and grading. But recently, it has been insufficient in quantity to collect good natural aggregate because of exhaustion of aggregate resources. In case of Korea, the using ratio of crushed stone occupies about 97 percent of total coarse aggregate, and ratio of crushed sand occupies about 18.3 percent of total fine aggregate. This is an experimental study to compare and analyze the properties of crushed sand for concrete in capital region and concrete according to the replacement ratio of crushed sand to improve quality and mix design of concrete using crushed sand. According to test results, it was found that nearly all the properties of crushed sand satisfied with the value recommended by KS. And it is recommended that FM of crushed sand should be lowered by improvement of manufacture system or grading adjustment should be used because FM of crushed sand was a bit higher.

인공어초용 재생골재 콘크리트의 최적 배합설계 모델 (Optimal Mix Design Model of Recycled Aggregate Concrete for Artificial fishing Reefs)

  • 홍종현;김문훈;우광성;고성현
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.53-62
    • /
    • 2004
  • The Purpose of this study is to recycle the waste concrete, which is generated in huge quantities, from construction works. in order to achieve this goal, it is important to determine the compressive strength, workability, slump, and ultrasonic velocity of recycled aggregate concrete. Thus, several experiment parameters are considered, such as water-cement ratios, sand percentage, and fine aggregate composition ratios, in order to apply the recycled aggregate concrete to pre-cast artificial fishing reefs. From the results, it has been shown that the proper mix designs for reef concrete are W/C=45%, S/a=50%, SR50:SN50 in recycled sand and natural sand mix combination case, W/C=45%, S/a=50%, SC50:SN50 in crushed sand and natural sand mix combination case, W/C=45%, S/a=50%, SR50:SC50 in recycled sand and crushd sand mix combination case. Also, this study shows that the shape and surface roughness of fine aggregate particles have an effect on the strength, slump, ultrasonic velocity of tested concrete, and the compressive strength ratios of 7days' and 90days' curing ages of recycled aggregate concrete are about 70% and 110% of 28days' curing age.

Durability properties of mortars with fly ash containing recycled aggregates

  • Kurbetci, Sirin;Nas, Memduh;Sahin, Mustafa
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.101-111
    • /
    • 2022
  • The rapid development of the construction industry in the world causes a rapid increase in the consumption of aggregate resources, which leads to the depletion of existing aggregate reserves. The use of recycled aggregate in the production of concrete and mortar may be a good solution to reduce the use of natural raw materials and to reduce demolition waste in the environment. In this study investigating the use of recycled aggregate in mortar production, mortar mixtures were produced by substituting 0%, 25%, 50% and 100% fine recycled aggregate (FRA) instead of natural aggregate. The effect of 20% and 40% fly ash (FA) substitutes on cement mortar performance was also investigated. Compressive and flexural strength, drying shrinkage, abrasion resistance, water absorption and capillary water absorption were investigated on the produced mortars. The increase in the use of FRA reduced the compressive and flexural strengths of mortars. While the capillarity coefficients, water absorption, rapid chloride permeability and drying shrinkage of the mortars increased with the increase in the use of FRA, the effect of the use of fly ash on the rate of increase remained lower. The increased use of FRA has improved abrasion resistance as well.

재생굵은골재 사용 콘크리트의 내동해성 향상을 위한 연구 (A Study on Improvement for Freeze and Thaw Durability of Concrete Using Recycled Coarse Aggregate)

  • 김용직;문한영;문대중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.643-648
    • /
    • 2002
  • A research for recycling the demolished-concrete as concrete aggregate has been concerned in all over the world. There, however, are some problems that qualities of recycled aggregates are not only largely different, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with that of natural aggregate concrete. In this study, the resistance of freezing and thawing of concrete using source-concrete recycled aggregate(SRN) and demolished-concrete recycled aggregate(DRA) was investigated. Futhermore a research for improvement of freeze and thaw durability of recycled aggregate concrete was performed. Relative dynamic modulus of elasticity of SRN and DRA recycled aggregate concrete was dropped 60% before 150 of freezing and thawing cycle, and was much lower than that of control concrete. Relative dynamic modulus of elasticity of recycled aggregate concrete was increased to decrease water-cement ratio, but the freeze and thaw durability of recycled aggregate concrete was not enough improved. Futhermore, when metakaolin and silica fume were repalced, the freeze and thaw durability of recycled aggregate concrete containg metakaolin was more improved than that of silica fume.

  • PDF

고품질 재생 골재를 사용한 콘크리트의 특성 (Properties of Recycled Concrete with High Quality Recycled Aggregate)

  • 정지용;곽은구;김진만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.384-387
    • /
    • 2004
  • Though recycled aggregate is useful resources for concrete, its application to structural frame is not frequent, because of low quality of recycled aggregate. Owing to the development of manufacturing technology to recycled aggregate, it is possible to produce high quality recycled aggregate. The purpose of this study is to confirm the applicability of the high quality recycled aggregate, instead of the natural aggregate, to normal concrete. Main factors of this study are substitute proportion of recycled aggregate, types of recycled aggregate, targeting compressive strength of recycled concrete. From the results of the study, we concluded that it is possible to use high quality recycled aggregate, to get the same strength as concrete using normal aggregate.

  • PDF

골재의 종류에 따른 고강도 콘크리트의 시공 특성에 관한 기초적 연구 (A Fundamental Study on the Workability of High Strength Concrete according to Kinds of Aggregate)

  • 최희용;김규용;최민수;김진만;심옥진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.12-17
    • /
    • 1996
  • It is true that aggregate strength is usually not a factor in normal concrete strength because, the aggregate particle is several times stronger than the matrix and the transition zone in concrete. In other words, with most natural aggregates the strength of the aggregate is hardly utilized because the failure is determined by the other two phases. But aggregate characteristics that are significant to concrete technology include porosity, grading or size distribution, moisture absorption, shape and surface texture, crushing strength, elastic modulus, and the type of deleterious substances present. Therefore, in the area of high strength concrete, concrete is much more influenced by properties of aggregate. This experiment is performed to investigate how kinds of aggregare influence on the workability of high strength concrete. In this experiment, four types of aggregate is used, that is crushed river aggregate, crushed stone, recycled aggregate of low strength and recycled aggregate of high strength. In this study, we scrutinize a fundmental study on the workability of high strength concrete according to kinds of aggregate.

  • PDF