• Title/Summary/Keyword: Native Oxide

Search Result 145, Processing Time 0.032 seconds

SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES (양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구)

  • Lee, Sang-Han;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF

Effects of a lipid-encapsulated zinc oxide supplement on growth performance and intestinal morphology and digestive enzyme activities in weanling pigs

  • Jang, Insurk;Kwon, Chang Hoon;Ha, Duck Min;Jung, Dae Yun;Kang, Sun Young;Park, Man Jong;Han, Jeong Hee;Park, Byung-Chul;Lee, Chul Young
    • Journal of Animal Science and Technology
    • /
    • v.56 no.8
    • /
    • pp.29.1-29.6
    • /
    • 2014
  • This study compared the effects of varying lipid content and dietary concentration of a lipid-encapsulated (LE) ZnO product to those of native ZnO and thereby to find insights into optimal lipid coating and dosage of the Zn supplement. A total of 192 21-d-old weanling pigs were allotted to 48 pens, after which each six pens received a ZnO-free basal diet supplemented with 125 ppm ZnO (100 ppm Zn; BASAL), 2,500 ppm Zn as native ZnO (HIGH), or 100 or 200 ppm Zn as LE ZnO (LE-100 or LE-250) containing 8%, 10%, or 12% lipid [LE-8%, LE-10%, or LE-12%, respectively; $2{\times}3$ factorial arrangement within the LE-ZnO diets (LE-ALL)] for 14 d. Forty pigs were killed at the end for histological and biochemical examinations. None of ADG, ADFI, gain:feed, and fecal consistency score differed between the LE-ALL and either of the BASAL and HIGH groups. Hepatic and serum Zn concentrations were greater (p <0.05) in the HIGH vs. LE-ALL group, but did not differ between LE-ALL and BASAL, between LE-100 and -250, or among LE-8%, -10%, and -12% groups. Villus height (VH), crypt depth (CD), and the VH:CD ratio in the duodenum, jejunum, and ileum did not differ between the LE-ALL and either of the BASAL and HIGH groups, except for a greater CD in the duodenum in the LE-ALL vs. HIGH group. Additionally, VH and CD in the duodenum and VH:CD in the jejunum were greater in the LE-250 vs. LE-100 group. Specific activities of sucrase, maltase, and leucine aminopeptidase in these intestinal regions and those of amylase and trypsin in the pancreas were not influenced by the lipid content or dietary concentration of LE ZnO and also did not differ between the LE-ALL and either of the BASAL and HIGH groups, except for a greater pancreatic amylase activity in the former vs. HIGH group. In conclusion, the present results indicate that the LE ZnO, regardless of its lipid percentage or supplementation level examined in this study, has no significant effect on growth performance, fecal consistency, or digestive enzyme activities of weanling pigs under the experimental conditions.

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

Reactive Oxygen Species Scavenging Activity of Jeju Native Citrus Peel during Maturation (수확시기별 제주재래종 감귤과피의 활성산소종 소거활성)

  • Kim, Yong-Dug;Mahinda, Senevirathne;Koh, Kyung-Soo;Jeon, You-Jin;Kim, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.462-469
    • /
    • 2009
  • This study was conducted to investigate total polyphenolic contents and reactive oxygen species (ROS) scavenging effects of extracts from peels of ten Jeju native citrus fruits according to the harvest from August 2006 to February 2007. Total polyphenolic contents from methanol extracts of citrus peel were the highest in Jigak (Citrus aurantium) and Hongkyool (C. tachibana) by over 200 mg% in the unmatured period, from the late August to the late September, and all the citrus peels mostly decreased while ripening. Scavenging effect of superoxide anion radical showed good correlation with total polyphenolic contents. The unmatured periods of Hongkyool and Jigak were the highest with more than 60%. Hydrogen peroxide scavenging activity was the highest in Sadoogam (C. pseudogulgul) at 73.8% in late August and the second highest activity was observed in Jigak at near 70%, and all the citrus peels decreased during ripening. Hydroxy radical scavenging activity were the highest among all the ROS scavenging activities, especially in the Jigak and Dangyooja (C. grandis) at 75.1% and 74.6%, respectively, and not much affected by increased maturity of the fruits. Nitric oxide radical scavenging activity was the highest in Bungkyool (C. platymama) at 58.4% in late February, and increased with fruit ripening. In this study, Jigak was generally the highest in the polyphenolic contents and ROS scavenging activities, so the further studies are needed for industrial applications.

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

Comparison on the Physical & Chemical Characteristics in Surface of Polished Wafer and Epi-Layer Wafer (Polished Wafer와 Epi-Layer Wafer의 표면 처리에 따른 표면 화학적/물리적 특성)

  • Kim, Jin-Seo;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.682-688
    • /
    • 2014
  • Physical and chemical changes in a polished wafer and in $2.5{\mu}m$ & $4{\mu}m$ epitaxially grown Si layer wafers (Epilayer wafer) after surface treatment were investigated. We characterized the influence of surface treatment on wafer properties such as surface roughness and the chemical composition and bonds. After each surface treatment, the physical change of the wafer surface was evaluated by atomic force microscopy to confirm the surface morphology and roughness. In addition, chemical changes in the wafer surface were studied by X-ray photoemission spectroscopy measurement. Changes in the chemical composition were confirmed before and after the surface treatment. By combined analysis of the physical and chemical changes, we found that diluted hydrofluoric acid treatment is more effective than buffered oxide etching for $SiO_2$ removal in both polished and Epi-Layer wafers; however, the etch rate and the surface roughness in the given treatment are different among the polished $2.5{\mu}m$ and $4{\mu}m$ Epi-layer wafers in spite of the identical bulk structural properties of these wafers. This study therefore suggests that independent surface treatment optimization is required for each wafer type, $2.5{\mu}m$ and $4{\mu}m$, due to the meaningful differences in the initial surface chemical and physical properties.

Cloning and Characterization of Filamentous Fungal S-Nitrosoglutathione Reductase from Aspergillus nidulans

  • Zhou, Yao;Zhou, Shengmin;Yu, Haijun;Li, Jingyi;Xia, Yang;Li, Baoyi;Wang, Xiaoli;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.928-937
    • /
    • 2016
  • S-Nitrosoglutathione reductase (GSNOR) metabolizes S-nitrosoglutathione (GSNO) and has been shown to play important roles in regulating cellular signaling and formulating host defense by modulating intracellular nitric oxide levels. The enzyme has been found in bacterial, yeast, mushroom, plant, and mammalian cells. However, to date, there is still no evidence of its occurrence in filamentous fungi. In this study, we cloned and investigated a GSNOR-like enzyme from the filamentous fungus Aspergillus nidulans. The enzyme occurred in native form as a homodimer and exhibited low thermal stability. GSNO was an ideal substrate for the enzyme. The apparent Km and kcat values were 0.55 mM and 34,100 min-1, respectively. Substrate binding sites and catalytic center amino acid residues based on those from known GSNORs were conserved in this enzyme, and the corresponding roles were verified using site-directed mutagenesis. Therefore, we demonstrated the presence of GSNOR in a filamentous fungus for the first time.

Anti-inflammatory Effect of the Hot Water Extract from Sasa quelpaertensis Leaves

  • Hwang, Joon-Ho;Choi, Soo-Yoon;Ko, Hee-Chul;Jang, Mi-Gyeong;Jin, Young-Jon;Kang, Seong-Il;Park, Ji-Gweon;Chung, Wan-Seok;Kim, Se-Jae
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.728-733
    • /
    • 2007
  • Bamboo grass, Sasa quelpaertensis, is a native plant to Jeju Island, Korea. The leaves of Sasa plants are widely used in traditional Korean medicine to treat inflammation-related diseases. We investigated the effect of hot water extract from Sasa quelpaertensis leaves (HWE-SQ) on nitric oxide (NO) production and nuclear $factor-{\kappa}B\;(NF-{\kappa}B)$ activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. HWE-SQ inhibited LPS-induced NO production and inducible NO synthase (iNOS) protein expression in a dose-dependent manner. Reporter gene assays indicated that HWE-SQ decreases LPS-induced $NF-{\kappa}B$ transcriptional activation. However, HWE-SQ did not affect the phosphorylation and degradation of inhibitory ${\kappa}B{\alpha}\;(1{\kappa}B{\alpha})$. HWE-SQ also directly inhibited iNOS enzyme activity in a dose-dependent manner. These results suggest that HWE-SQ suppresses NO synthesis in macrophages by attenuating $NF-{\kappa}B-mediated$ iNOS protein expression and inhibiting iNOS enzymatic activity, thereby implicating a mechanism by which HWE-SQ is able to ameliorate inflammation-related diseases by limiting excessive or prolonged NO production in pathological events.