References
- Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. 39: 191-220 (1999) https://doi.org/10.1146/annurev.pharmtox.39.1.191
- Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function, and inhibition. Biochem. J. 357: 593-615 (2001) https://doi.org/10.1042/0264-6021:3570593
- Wang Y, Marsden PA. Nitric oxide synthases: gene structure and regulation. Adv. Pharmacol. 34: 71-90 (1995) https://doi.org/10.1016/S1054-3589(08)61081-9
- Bogdan C. Nitric oxide and the immune response. Nat. Immun. 2: 907-916 (2001) https://doi.org/10.1038/ni1001-907
- Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla- Herttuala S. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscl. Throm. Vas. 18: 157-167 (1998) https://doi.org/10.1161/01.ATV.18.2.157
- Dusting GS. Nitric oxide in coronary artery disease: roles in atherosclerosis, myocardial reperfusion, and heart failure. EXS 76: 33-55 (1996)
-
Xie Q, Kashiwabara Y, Nathan C. Role of transcription factor NF-
$\kappa$ B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269: 4705-4708 (1994) -
Baeuerle PA, Henkel T. Function and activation of NF-
$\kappa$ B in the immune system. Annu. Rev. Immunol. 12: 141-179 (1994) https://doi.org/10.1146/annurev.iy.12.040194.001041 - Thanos D, Maniatis T. NF-kappa B: a lesson in family values. Cell 80: 529-532 (1995) https://doi.org/10.1016/0092-8674(95)90506-5
- Choi SY, Hwang JH, Ko HC, Park SY, Kim GO, Kim DH, Chang IS, Kwon HM, Kim SJ. Inhibitory action of Tsunokaori tangor peel on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophage cells. Food Sci. Biotechnol. 15: 270-276 (2006)
- Khatib A, Kim MY, Chung SK. Anti-inflammatory activities of Cinanamomum burmanni Bl. Food Sci. Biotechnol. 14: 223-227 (2005)
- Yeo EJ, Kim KT, Han YS, Nah SY, Paik HD. Antimicrobial, antiinflammatory, and anti-oxidative activities of Scilla scilloides (Lindl.) Druce root extract. Food Sci. Biotechnol. 15: 639-642 (2006)
- Namba T, Bae KH. Pharmacognostical studies on the crude drug 'Zhu-Ye' and the Rambusaceous plants the botanical origins of the folk medicine 'Kuma-Zasa' on the Japanese markets and the comparative anatomical studies of the leaves of the genus Sasa (Sections S). Shoyakugaku Zasshi 36: 43-54 (1982)
- Lee MJ, Moon GS. Antioxidative effects of Korean bamboo trees, Wang-dae, Som-dae, Maengjong-juk, Jolit-dae, and O-juk. Korean J. Food Sci. Technol. 35: 1226-1232 (2003)
- Zang Y, Wu XQ, Yu XY. Comparison study on total flavonoid content and anti-free radical activity of leaves of bamboo, phyllostachys nigra, and Ginko biloba. Zhongguo Zhong Yao Za Zhi 27: 254-257 (2002)
- Hu C, Zhang Y, Kitts DD. Evaluation of antioxidant and prooxidant activities of bamboo Phylloatachys nigra var. henonis leaf extract in vitro. J. Agr. Food Chem. 48: 3170-3176 (2000) https://doi.org/10.1021/jf0001637
- Park HS, Lim JH, Kim HJ, Choi HJ, Lee IS. Antioxidant flavone glycosides from the leaves of Sasa borealis. Arch. Pharm. Res. 30: 161-166 (2007) https://doi.org/10.1007/BF02977689
- Jeong YH, Chung SY, Han AR, Sung MK, Jang DS, Lee J, Kwon Y, Lee HJ, Seo EK. P-glycoprotein inhibitory activity of two phenolic compounds, (-)-syringaresinol, and tricin from Sasa borealis. Chem. Biodivers. 4: 12-16 (2007) https://doi.org/10.1002/cbdv.200790001
- Ren M, Reilly RT, Sacchi N. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis. Anticancer Res. 24: 2879- 2884 (2004)
- Kweon MH, Hwang HJ, Sung HC. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phylloatachys edulis). J. Agr. Food Chem. 49: 4646-4655 (2001) https://doi.org/10.1021/jf010514x
- Lu B, Wu X, Shi J, Dong Y, Zhang Y. Toxicology and safety of antioxidant of bamboo leaves. Part 2: developmental toxicity test in rats with antioxidant of bamboo leaves. Food Chem. Toxicol. 44: 1739-1743 (2006) https://doi.org/10.1016/j.fct.2006.05.012
- Yoon KD, Kim CY, Huh H. The flavone glycosides of Sasa borealis. Korean J. Pharmacogn. 31: 224-227 (2000)
- Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J. Immunol. Methods 131: 165-172 (1990) https://doi.org/10.1016/0022-1759(90)90187-Z
- He Q, Riley RT, Sharma RP. Pharmacological antagonism of fumonisin B1 cytotoxicity in porcine renal epithelial cells (LLCPK1): a model for reducing fumonisin-induced nephrotoxicity in vivo. Pharmacol. Toxicol. 90: 268-277 (2002) https://doi.org/10.1034/j.1600-0773.2002.900507.x
- Hsieh GS, Acosta D. Dithranol-induced cytotoxicity in primary cultures of rat epidermal keratinocytes. Toxicol. Appl. Pharm. 107: 16-26 (1991) https://doi.org/10.1016/0041-008X(91)90326-A
-
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [
$^{15}N^ ] nitrate in biological fluids. Anal. Biochem. 126: 131-138 (1982) https://doi.org/10.1016/0003-2697(82)90118-X - Wang MJ, Huang HM, Chen HL, Kuo JS, Jeng KC. Dehydroepiandrosterone inhibits lipopolysaccharide-induced nitric oxide production in BV-2 microglia. J. Neurochem. 77: 830-838 (2001) https://doi.org/10.1046/j.1471-4159.2001.00295.x
- Wilson KT, Ramanujam KS, Mobley HL, Musselman RF, James SP, Meltzer SJ. Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line. Gastroenterology 111: 1524-1533 (1996) https://doi.org/10.1016/S0016-5085(96)70014-8
- Kobuchi H, Droy-Lefaix MT, Christen Y, Packer L. Ginkgo biloba extract (EGb 761): inhibitory effect on nitric oxide production in the macrophage cell line RAW 264.7. Biochem. Pharmacol. 53: 897- 903 (1997) https://doi.org/10.1016/S0006-2952(96)00873-8
- Sheu F, Lai HH, Yen GC. Suppression effect of soy isoflavones on nitric oxide production in RAW 264.7 macrophages. J. Agr. Food Chem. 49: 1767-1772 (2001) https://doi.org/10.1021/jf001198+
- Goodman JE, Hofseth LJ, Hussain P, Harris CC. Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ. Mol. Mutagen. 44: 3-9 (2004) https://doi.org/10.1002/em.20024
- Vakkala M, Kahlos K, Lakari E, Paakko P, Kinnula V, Soini Y. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin. Cancer Res. 6: 2408- 2416 (2000)
- Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M, Harkonen P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol. Res. 29: 25-28 (2001) https://doi.org/10.1007/s002400000148
- Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 15: 277-289 (2005) https://doi.org/10.1016/j.semcancer.2005.04.004
- Zhang X, Laubach VE, Alley EW, Edwards KA, Sherman PA, Russell SW, Murphy WJ. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/ interferon-c. J. Leukocyte Biol. 59: 575-585 (1996) https://doi.org/10.1002/jlb.59.4.575
- Taylor BS, Geller DA. Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene. Shock 13: 413-424 (2000) https://doi.org/10.1097/00024382-200006000-00001
-
Baeuerle PA, Baltimore D. I
$\kappa$ B: a specific inhibitor of the NF-$\kappa$ B transcription factor. Science 242: 540-546 (1988) https://doi.org/10.1126/science.3140380 -
Sun SC, Ganchi PA, Ballard DW, Greene WC. NF-
$\kappa$ B controls expression of inhibitor I${\kappa}B{\alpha}$ : evidence for an inducible autoregulatory pathway. Science 259: 1912-1915 (1993) https://doi.org/10.1126/science.8096091 - Rao KM, Meighan T, Bowman L. Role of mitogen-activated protein kinase activation in the production of inflammatory mediators: differences between primary rat alveolar macrophages and macrophage cell lines. J. Toxicol. Env. Heal. A 65: 757-768 (2002) https://doi.org/10.1080/00984100290071027
- Kefaloyianni E, Gaitanaki C, Beis I. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell. Signal. 18: 2238-2251 (2006) https://doi.org/10.1016/j.cellsig.2006.05.004
- Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153-162 (2004) https://doi.org/10.1111/j.1365-2567.2004.01976.x
- Wong WS. Inhibitors of the tyrosine kinase signaling cascade for asthma. Curr. Opin. Pharmacol. 5: 264-271 (2005) https://doi.org/10.1016/j.coph.2005.01.009