• Title/Summary/Keyword: Nasal vaccine

Search Result 38, Processing Time 0.028 seconds

Nasal vaccine as a booster shot: a viable solution to restrict pandemic?

  • Sarasa Meenakshi;V .Udaya Kumar;Sameer Dhingra;Krishna Murti
    • Clinical and Experimental Vaccine Research
    • /
    • v.11 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) pandemic revolutionized the vaccine market and initiated the momentum for alternative routes of administration for vaccines. The intranasal route of immunization is one such possibility that appears to be the most promising since it has some significant advantages, particularly in the prevention of respiratory infection. To analyze and summarize the role of nasal vaccines over conventional vaccines during COVID-19 and the need for the nasal vaccine as a booster shot. In this narrative review, the required data was retrieved using keywords "COVID-19," "Intranasal," "Immunity," "Nasal spray," and "Mucosal" in databases including PubMed, Scopus, Embase, Science Direct, and Web of Sciences. The results of the study showed that the nasal vaccines were both effective and protective according to the current researches approaching during the COVID-19 period and the preclinical and clinical phase trials prove the intranasal vaccination elicits more robust and cross-protective immunity than conventional vaccines. In this narrative review article, mechanisms across the nasal mucosa will be briefly presented and the current status of nasal vaccines during the COVID-19 pandemic is summarized, and advantages over traditional vaccines are provided. Furthermore, after exploring the primary benefits and kinetics of nasal vaccine, the potential for consideration of nasal vaccine as a booster dose is also discussed.

Studies on the Efficacy of Infectious Laryngotracheitis Vaccine (닭 전염성 후두기관염 백신효과 연구)

  • 최해연;정운선;유기조
    • Korean Journal of Veterinary Service
    • /
    • v.16 no.1
    • /
    • pp.76-81
    • /
    • 1993
  • To evaluate the pathogenesis of live infectious laryngotracheitis vaccine, virus, virus and E.coli were inoculated in 4-weeks old intraorbitally and intraorally. Their pathology and serology were studied. The results were as follows. 1. thicks Inoculated with ILT vaccine alone showed no clinical sign. 2. Some of chicks inoculated with ILT vaccine followed by E.coli after 1day showed nasal discharge and cough. 3. Some of chicks inoculated with E. coli followed by ILT vaccine after 1 day and inoculated ILT vaccine and E.coli concurrently, showed nasal discharge. 4. Serum neutralization titers of chicks inoculated with ILT vaccine increased 3 weeks after Inoculation, peaked at 7 to 8 weeks and decreased. 5. Antibiotic sensitivity of E.coli were higher in Enrofloxacin (Baytril) and chloramphenical.

  • PDF

Controlled Release of Bordetella Bronchiseptica Dermonecrotoxin(BBD) Vaccine from BBD-Loaded Chitosan Microspheres In Vitro

  • Jiang, Hu-Lin;Park, In-Kyu;Shin, Na-Ri;Yoo, Han-Sang;Akaike, Toshihiro;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.346-350
    • /
    • 2004
  • Chitosan microspheres were prepared by ionic gelation process with sodium sulfate for nasal vaccine delivery. Bordetella Bronchiseptica Dermonecrotoxin (BBD) as a major virulence factor of a causative agent of atrophic rhinitis (AR) was loaded to the chitosan microspheres for vaccination. Morphology of BBD-loaded chitosan microspheres was observed as spherical shapes. The average particle sizes of the BBD-loaded chitosan microspheres were about $2.69$\mid${\;}\mu\textrm{m}$. More BBD was released with an increase of molecular weight of chitosan and with an increase of medium pH in vitro due to weaker intermolecular interaction between chitosan and BBD. Tumor necrosis $factor-{\alpha}{\;}(TNF{\alpha})$ and nitric oxide (NO) from RAW264.7 cells stimulated with BBD-loaded chitosan microspheres were gradually secreted, suggesting that released BBD from chitosan microspheres had immune stimulating activity of AR vaccine.

Vaccines development in India: advances, regulation, and challenges

  • Rakshita Salalli;Jyoti Ram Dange;Sonia Dhiman;Teenu Sharma
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.193-208
    • /
    • 2023
  • One of the most significant medical advancements in human history is the development of vaccines. Progress in vaccine development has always been greatly influenced by scientific human innovation. The main objective of vaccine development would be to acquire sufficient evidence of vaccine effectiveness, immunogenicity, safety, and/or quality to support requests for marketing approval. Vaccines are biological products that enhance the body's defenses against infectious diseases. From the first smallpox vaccine to the latest notable coronavirus disease 2019 nasal vaccine, India has come a long way. The development of numerous vaccines, driven by scientific innovation and advancement, combined with researcher's knowledge, has helped to reduce the global burden of disease and mortality rates. The Drugs and Cosmetics Rules of 1945 and the New Drugs and Clinical Trials Rules of 2019 specify the requirements and guidelines for CMC (chemistry, manufacturing, and controls) for all manufactured and imported vaccines, including those against coronavirus infections. This article provides an overview of the regulation pertaining to the development process, registration, and approval procedures for vaccines, particularly in India, along with their brief history.

Studies on isolation of rhinopneumonitis virus from Korean horses and its immunogenicity III. Studies on immunogenicity of equine herpesvirus in experimental animals (국내 말로부터 비폐렴바이러스의 분리 및 면역원성에 관한 연구 III. 말 비폐렴바이러스의 실험동물에 대한 면역원성 조사)

  • Cho, Gil-jae;Kim, Bong-hwan;So, Sin-hee;Lee, Du-sik
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.753-758
    • /
    • 1995
  • The study was carried out to investigate the pathogenicity of EHV isolate to hamsters and mice and immunogenicity of experimentally produced. vaccine were evaluated in the horses. Hamsters infected. intranasally with $LC_1$ isolate showed symptoms of nasal discharge, conjunctivitis and body weight loss during the observation period of 12 days after infection, while only slight depression and body weight loss were noticed with mice infected with $LC_1$ indicating that hamsters are more susceptible to the virus. Antibody titer of mice and hamsters were gradually increased to highest level of 1:2560~10240, 1:640~1280, respectively, at 7~12 days post vaccination. Horses immunized against $LC_1$ killed vaccine reached to maximum antibody titer of 1:20480 around 4 weeks after 1st vaccination and declined after 12 weeks post vaccination. No significant antibody increase were detected after 2nd vaccination. Mean body temperature and mean total leukocyte counts remained within normal range and no adverse reaction were noticed after vaccination.

  • PDF

Effects of the modified live vaccines against Bordetella bronchiseptica and canine parainfluenza virus (개 전염성 기관기관지염에 대한 modified live vaccine의 방어효과)

  • Park, Young-Il;Roh, In-Soon;Han, Jeong-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.1
    • /
    • pp.57-70
    • /
    • 2008
  • The purpose of this study was to investigate the protective effects of the modified live vaccines against canine Bordetella bronchiseptica (Bb) and canine parainfluenza virus (CPIV) in puppies by nasal administration. A total of 24 puppies were classified as 3 groups consisting of 8, and each one was divided into two subgroups; vaccinated (n=4) and unvaccinated (n=4). Group I, group II and group III were challenged with Bb, CPIV, and Bb+CPIV, respectively. In group I vaccinated puppies (n=4) were experimentally challenged with Bb 2 weeks after vaccination and unvaccinated puppies (n=4) were experimentally challenged with Bb alone. The same methods of the above were applied for group II and group III. We carried out several studies including serum tests, isolation, and histopathological examination. The vaccinated puppies showed higher antibody titers than unvaccinated puppies and the titer sustained during the experimental period. In the isolation test, recovery period was shorter in the vaccinated subgroup than in the other. In clinical signs, the unvaccinated puppies showed the typical signs of tracheobronchitis (coughing, nasal and occular discharge), but another subgroup showed delayed incidence and mild clinical signs. The typical gross lesions and histopathological findings were observed in the unvaccinated puppies. In immunohistochemical findings, the vaccinated puppies showed little intensive in reaction for CPIV antigen than the other. It could be concluded that intranasal vaccination of modified live Bb and CPIV vaccine to puppies is effective to prevent canine infectious tracheobronchitis.

A Molecular Mucosal Adjuvant To Enhance Immunity Against Pneumococcal Infection In The Elderly

  • Fukuyama, Yoshiko;Ikeda, Yorihiko;Ohori, Junichiro;Sugita, Gen;Aso, Kazuyoshi;Fujihashi, Keiko;Briles, David E.;McGhee, Jerry R.;Fujihashi, Kohtaro
    • IMMUNE NETWORK
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Streptococcus pneumoniae (the pneumococcus) causes a major upper respiratory tract infection often leading to severe illness and death in the elderly. Thus, it is important to induce safe and effective mucosal immunity against this pathogen in order to prevent pnuemocaccal infection. However, this is a very difficult task to elicit protective mucosal IgA antibody responses in older individuals. A combind nasal adjuvant consisting of a plasmid encoding the Flt3 ligand cDNA (pFL) and CpG oligonucleotide (CpG ODN) successfully enhanced S. pneumoniae-specific mucosal immunity in aged mice. In particular, a pneumococcal surface protein A-based nasal vaccine given with pFL and CpG ODN induced complete protection from S. pneumoniae infection. These results show that nasal delivery of a combined DNA adjuvant offers an attractive potential for protection against the pneumococcus in the elderly.

Nasal Immunization Using Chitosan Nanoparticles with Glycoprotein B of Murine Cytomegalovirus

  • Marcela Slovakova;Sylva Janovska;Radek Sleha;Vera Radochova;Alexandra Hatala;Nikola Mannova;Radovan Metelka;Ludovit Pudelka;Pavel Bostik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.663-672
    • /
    • 2024
  • The use of nanoparticles as a delivery system for a specific antigen could solve many limitations of mucosal vaccine applications, such as low immunogenicity, or antigen protection and stabilization. In this study, we tested the ability of nasally administered chitosan nanoparticles loaded with glycoprotein B of murine cytomegalovirus to induce an immune response in an animal model. The choice of chitosan nanoparticle type was made by in vitro evaluation of sorption efficiency and antigen release. Three types of chitosan nanoparticles were prepared: crosslinked with tripolyphosphate, coated with hyaluronic acid, and in complex with polycaprolactone. The hydrodynamic size of the nanoparticles by dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, scanning electron microscopy, stability, loading efficiency, and release kinetics with ovalbumin were evaluated. Balb/c mice were immunized intranasally using the three-dose protocol with nanoparticles, gB, and adjuvants Poly(I:C) and CpG ODN. Subsequently, the humoral and cell-mediated antigen-specific immune response was determined. On the basis of the properties of the tested nanoparticles, the cross-linked nanoparticles were considered optimal for further investigation. The results show that nanoparticles with Poly(I:C) and with gB alone raised IgG antibody levels above the negative control. In the case of mucosal IgA, only gB alone weakly induced the production of IgA antibodies compared to saline-immunized mice. The number of activated cells increased slightly in mice immunized with nanoparticles and gB compared to those immunized with gB alone or to negative control. The results demonstrated that chitosan nanoparticles could have potential in the development of mucosal vaccines.

The Mucosal Immune System for the Development of New Generation Vaccine

  • Yuki, Yoshikazu;Kiyono, Hiroshi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2003.06a
    • /
    • pp.55-62
    • /
    • 2003
  • The mucosal immune system provides a first line of defense against invasion of infectious agents via inhalation, ingestion and sexual contact. For the induction of protective immunity at these invasion sites, one must consider the use of the CMIS, which interconnects inductive tissues, including PP and NALT, and effector tissues of the intestinal, respiratory and genitourinary tracts. In order for the CMIS to induce maximal protective mucosal immunity, co-administration of mucosal adjuvant or use of mucosal antigen delivery vehicle has been shown to be essential. When vaccine antigen is administered via oral or nasal route, antigen-specific Th 1 and Th2 cells, cytotoxic T lymphocytes(CTLs) and IgA B cell responses are effectively induced by the CMIS. In the early stages of induction of mucosal immune response, the uptake of orally or nasally administered antigens is achieved through a unique set of antigen-sampling cells, M cells located in follicle-associated epithelium(FAE) of inductive sites. After successful uptake, the antigens are immediately processed and presented by the underlying DCs for the generation of antigen-specific T cells and IgA committed B cells. These antigen-specific lymphocytes are then home to the distant mucosal effector tissues for the induction of antigen-specific humoral(e.g., IgA) and cell-mediated (e.g., CTL and Th1) immune responses in order to form the first line of defense. Elucidation of the molecular/cellular characteristics of the immunological sequence of mucosal immune response beginning from the antigen sampling and processing/presentation by M cells and mucosal DCs followed by the effector phase with antigen-specific lymphocytes will greatly facilitate the design of a new generation of effective mucosal antigen-specific lymphocytes will greatly facilitate the design of a new generation of a new generation of effective mucosal adjuvants and of a vaccine deliver vehicle that maximizes the use of the CMIS.

  • PDF

Efficacy of bivalent vaccines of porcine circovirus type 2 and Mycoplasma hyopneumoniae in specific pathogen-free pigs challenged with porcine circovirus type 2d

  • Lim, Jeonggyo;Jin, Myongha;Yoon, Injoong;Yoo, Han Sang
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.49.1-49.13
    • /
    • 2022
  • Background: Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHP) are economically significant pathogens in the pig industry. The use of combined vaccines against PCV2 and MHP is one of the most effective ways of protecting pigs from both diseases, and it has become a part of general management. Objectives: This study evaluated the efficacy of two new bivalent vaccines of PCV2 and MHP (Myco-X and Myco-XD) in SPF pigs. Myco-X and Myco-XD are a combined vaccine of MHP with PCV2b and PCV2d, respectively. Methods: Sixteen pigs were divided into four groups: Myco-X-vaccinated challenged, Myco-XD-vaccinated challenged, unvaccinated challenged, and unvaccinated unchallenged. Two milliliters of Myco-X were administered intramuscularly, and 0.5 mL of Myco-XD was injected intradermally at 3 wk of age. The pigs were challenged with virulent PCV2d via the intramuscular and intranasal route 4 wk post-vaccination. Results: All vaccinated pigs showed effective reduction of the clinical signs, the PCV2d load in the blood and nasal swab samples, as well as lung and lymphoid tissue lesions in the challenge test. Compared to unvaccinated challenged animals, the vaccinated challenged animals showed significantly higher (p < 0.05) levels of anti-PCV2 IgG, PCV2d-specific interferon-γ (IFN-γ), and anti-MHP IgG. Conclusions: Based on clinical, microbiological, serological, and pathological assessments, this study confirmed that both combined vaccines could protect pigs against PCV2 infection caused by PCV2d. On the other hand, further research on the efficacy evaluation of these new vaccines against the MHP challenge and PCV2d/MHP co-challenge is needed.