Browse > Article
http://dx.doi.org/10.4110/in.2015.15.1.9

A Molecular Mucosal Adjuvant To Enhance Immunity Against Pneumococcal Infection In The Elderly  

Fukuyama, Yoshiko (Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo)
Ikeda, Yorihiko (Department of Pediatric Dentistry, The University of Alabama at Birmingham)
Ohori, Junichiro (Department of Pediatric Dentistry, The University of Alabama at Birmingham)
Sugita, Gen (Department of Pediatric Dentistry, The University of Alabama at Birmingham)
Aso, Kazuyoshi (Department of Pediatric Dentistry, The University of Alabama at Birmingham)
Fujihashi, Keiko (Department of Pediatric Dentistry, The University of Alabama at Birmingham)
Briles, David E. (Department of Microbiology, The University of Alabama at Birmingham)
McGhee, Jerry R. (Department of Pediatric Dentistry, The University of Alabama at Birmingham)
Fujihashi, Kohtaro (Department of Pediatric Dentistry, The University of Alabama at Birmingham)
Publication Information
IMMUNE NETWORK / v.15, no.1, 2015 , pp. 9-15 More about this Journal
Abstract
Streptococcus pneumoniae (the pneumococcus) causes a major upper respiratory tract infection often leading to severe illness and death in the elderly. Thus, it is important to induce safe and effective mucosal immunity against this pathogen in order to prevent pnuemocaccal infection. However, this is a very difficult task to elicit protective mucosal IgA antibody responses in older individuals. A combind nasal adjuvant consisting of a plasmid encoding the Flt3 ligand cDNA (pFL) and CpG oligonucleotide (CpG ODN) successfully enhanced S. pneumoniae-specific mucosal immunity in aged mice. In particular, a pneumococcal surface protein A-based nasal vaccine given with pFL and CpG ODN induced complete protection from S. pneumoniae infection. These results show that nasal delivery of a combined DNA adjuvant offers an attractive potential for protection against the pneumococcus in the elderly.
Keywords
Mucosa; Vaccination; Aging; Bacterial infection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fujihashi, K., P. N. Boyaka, and J. R. McGhee. 2013. Host defenses at mucosal surfaces. In Clinical Immunology. R.T. Rich, T.A. Fleisher, W.T. Shearer, H.W. Schroeder, A.J. Frew, and C.M. Weyand, editors. Elsevier, Philadelphia, p. 239-251.
2 Kiyono, H., J. Kunisawa, J. R. McGhee, and J. Mestecky. 2008. The Mucosal Immune System. In Fundamental Immunology. W.E. Paul, editor Lippincott Williams & Wilkins, Philadelphia, p. 983-1030.
3 Campbell, D. J., and E. C. Butcher. 2002. Rapid acquisition of tissue-specific homing phenotypes by $CD4^+$ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195: 135-141.   DOI
4 Campbell, J. J., C. E. Brightling, F. A. Symon, S. Qin, K. E. Murphy, M. Hodge, D. P. Andrew, L. Wu, E. C. Butcher, and A. J. Wardlaw. 2001. Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J. Immunol. 166: 2842-2848.   DOI
5 Csencsits, K. L., N. Walters, and D. W. Pascual. 2001. Cutting edge: dichotomy of homing receptor dependence by mucosal effector B cells: $\alpha$(E) versus L-selectin. J. Immunol. 167: 2441-2445.   DOI
6 Fujihashi, K., and J. R. McGhee. 2004. Mucosal immunity and tolerance in the elderly. Mech. Ageing Dev. 125: 889-898.   DOI
7 Fukuyama, S., T. Hiroi, Y. Yokota, P. D. Rennert, M. Yanagita, N. Kinoshita, S. Terawaki, T. Shikina, M. Yamamoto, Y. Kurono, and H. Kiyono. 2002. Initiation of NALT organogenesis is independent of the IL-7R, $LT{\beta}R$, and NIK signaling pathways but requires the Id2 gene and $CD3^-CD4^+CD45^+$ cells. Immunity 17: 31-40.   DOI
8 Hagiwara, Y., J. R. McGhee, K. Fujihashi, R. Kobayashi, N. Yoshino, K. Kataoka, Y. Etani, M. N. Kweon, S. Tamura, T. Kurata, Y. Takeda, H. Kiyono, and K. Fujihashi. 2003. Protective mucosal immunity in aging is associated with functional $CD4^+$ T cells in nasopharyngeal-associated lymphoreticular tissue. J. Immunol. 170: 1754-1762.   DOI
9 Kato, H., K. Fujihashi, R. Kato, T. Dohi, K. Fujihashi, Y. Hagiwara, K. Kataoka, R. Kobayashi, and J. R. McGhee. 2003. Lack of oral tolerance in aging is due to sequential loss of Peyer's patch cell interactions. Int. Immunol. 15: 145-158.   DOI
10 Koga, T., J. R. McGhee, H. Kato, R. Kato, H. Kiyono, and K. Fujihashi. 2000. Evidence for early aging in the mucosal immune system. J. Immunol. 165: 5352-5359.   DOI
11 Kunisawa, J., T. Nochi, and H. Kiyono. 2008. Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol. 29: 505-513.   DOI
12 Yoshida, H., K. Honda, R. Shinkura, S. Adachi, S. Nishikawa, K. Maki, K. Ikuta, and S. I. Nishikawa. 1999. IL-7 receptor $alpha^+$ CD3(-) cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11: 643-655.   DOI
13 Macpherson, A. J., K. D. McCoy, F. E. Johansen, and P. Brandtzaeg. 2008. The immune geography of IgA induction and function. Mucosal Immunol. 1: 11-22.   DOI
14 Pascual, D. W., C. Riccardi, and K. Csencsits-Smith. 2008. Distal IgA immunity can be sustained by ${\alpha}E{\beta}7^+$ B cells in L-selectin-/- mice following oral immunization. Mucosal Immunol. 1: 68-77.   DOI
15 Rennert, P. D., J. L. Browning, R. Mebius, F. Mackay, and P. S. Hochman. 1996. Surface lymphotoxin ${\alpha}/{\beta}$ complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184: 1999-2006.   DOI
16 Sun, Z., D. Unutmaz, Y. R. Zou, M. J. Sunshine, A. Pierani, S. Brenner-Morton, R. E. Mebius, and D. R. Littman. 2000. Requirement for ROR$\gamma$ in thymocyte survival and lymphoid organ development. Science 288: 2369-2373.   DOI
17 Yokota, Y., A. Mansouri, S. Mori, S. Sugawara, S. Adachi, S. Nishikawa, and P. Gruss. 1999. Development of peripheral lymphoid organs and natural killer cells depends on the helix- loop-helix inhibitor Id2. Nature 397: 702-706.   DOI
18 Arulanandam, B. P., J. M. Lynch, D. E. Briles, S. Hollingshead, and D. W. Metzger. 2001. Intranasal vaccination with pneumococcal surface protein A and interleukin- 12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect. Immun. 69: 6718-6724.   DOI
19 Wright, A. K., I. Christopoulou, B. S. El, J. Limer, and S. B. Gordon. 2011. rhIL-12 as adjuvant augments lung cell cytokine responses to pneumococcal whole cell antigen. Immunobiology 216: 1143-1147.   DOI
20 Nguyen, C. T., S. Y. Kim, M. S. Kim, S. E. Lee, and J. H. Rhee. 2011. Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice. Vaccine 29: 5731-5739.   DOI
21 Bitsaktsis, C., B. V. Iglesias, Y. Li, J. Colino, C. M. Snapper, S. K. Hollingshead, G. Pham, D. R. Gosselin, and E. J. Gosselin. 2012. Mucosal immunization with an unadjuvanted vaccine that targets Streptococcus pneumoniae PspA to human Fc$\gamma$ receptor type I protects against pneumococcal infection through complement- and lactoferrin-mediated bactericidal activity. Infect. Immun. 80: 1166-1180.   DOI
22 Hernani, M. L., P. C. Ferreira, D. M. Ferreira, E. N. Miyaji, P. L. Ho, and M. L. Oliveira. 2011. Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein C primes the immune system and decreases pneumococcal nasopharyngeal colonization in mice. FEMS Immunol. Med. Microbiol. 62: 263-272.   DOI
23 Muralinath, M., M. J. Kuehn, K. L. Roland, and R. Curtiss, III. 2011. Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect. Immun. 79: 887-894.   DOI
24 Xu, X., H. Wang, Y. Liu, Y. Wang, L. Zeng, K. Wu, J. Wang, F. Ma, W. Xu, Y. Yin, and X. Zhang. 2015. Mucosal immunization with the live attenuated vaccine SPY1 induces humoral and Th2-Th17-regulatory T cell cellular immunity and protects against pneumococcal infection. Infect. Immun. 83: 90-100.   DOI
25 Rosch, J. W., A. R. Iverson, J. Humann, B. Mann, G. Gao, P. Vogel, M. Mina, K. A. Murrah, A. C. Perez, S. W. Edward, E. I. Tuomanen, and J. A. McCullers. 2014. A live-attenuated pneumococcal vaccine elicits $CD4^+$ T-cell dependent class switching and provides serotype independent protection against acute otitis media. EMBO Mol. Med. 6: 141-154.   DOI
26 Rubins, J. B., M. Alter, J. Loch, and E. N. Janoff. 1999. Determination of antibody responses of elderly adults to all 23 capsular polysaccharides after pneumococcal vaccination. Infect. Immun. 67: 5979-5984.
27 Kim, E. H., S. Y. Choi, M. K. Kwon, T. D. Tran, S. S. Park, K. J. Lee, S. M. Bae, D. E. Briles, and D. K. Rhee. 2012. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine 30: 2008- 2019.   DOI
28 Janssens, J. P., and K. H. Krause. 2004. Pneumonia in the very old. Lancet Infect. Dis. 4: 112-124.   DOI
29 Schenkein, J. G., M. H. Nahm, and M. T. Dransfield. 2008. Pneumococcal vaccination for patients with COPD: current practice and future directions. Chest 133: 767-774.   DOI
30 Rubins, J. B., A. K. Puri, J. Loch, D. Charboneau, R. MacDonald, N. Opstad, and E. N. Janoff. 1998. Magnitude, duration, quality, and function of pneumococcal vaccine responses in elderly adults. J. Infect. Dis. 178: 431-440.   DOI
31 Briles, D. E., S. K. Hollingshead, J. King, A. Swift, P. A. Braun, M. K. Park, L. M. Ferguson, M. H. Nahm, and G. S. Nabors. 2000. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J. Infect. Dis. 182: 1694-1701.   DOI
32 Wu, H. Y., M. H. Nahm, Y. Guo, M. W. Russell, and D. E. Briles. 1997. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. J. Infect. Dis. 175: 839-846.   DOI
33 Yamamoto, M., D. E. Briles, S. Yamamoto, M. Ohmura, H. Kiyono, and J. R. McGhee. 1998. A nontoxic adjuvant for mucosal immunity to pneumococcal surface protein A. J. Immunol. 161: 4115-4121.
34 Fukuyama, Y., J. D. King, K. Kataoka, R. Kobayashi, R. S. Gilbert, K. Oishi, S. K. Hollingshead, D. E. Briles, and K. Fujihashi. 2010. Secretory-IgA antibodies play an important role in the immunity to Streptococcus pneumoniae. J. Immunol. 185: 1755-1762.   DOI
35 Janoff, E. N., C. Fasching, J. M. Orenstein, J. B. Rubins, N. L. Opstad, and A. P. Dalmasso. 1999. Killing of Streptococcus pneumoniae by capsular polysaccharide-specific polymeric IgA, complement, and phagocytes. J. Clin. Invest. 104: 1139-1147.   DOI
36 Park, S. M., H. J. Ko, D. H. Shim, J. Y. Yang, Y. H. Park, R. Curtiss, III, and M. N. Kweon. 2008. MyD88 signaling is not essential for induction of antigen-specific B cell responses but is indispensable for protection against Streptococcus pneumoniae infection following oral vaccination with attenuated Salmonella expressing PspA antigen. J. Immunol. 181: 6447-6455.   DOI
37 Sun, K., F. E. Johansen, L. Eckmann, and D. W. Metzger. 2004. An important role for polymeric Ig receptor-mediated transport of IgA in protection against Streptococcus pneumoniae nasopharyngeal carriage. J. Immunol. 173: 4576-4581.   DOI
38 Zhang, Z., T. B. Clarke, and J. N. Weiser. 2009. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J. Clin. Invest. 119: 1899-1909.
39 Zygmunt, B. M., F. Rharbaoui, L. Groebe, and C. A. Guzman. 2009. Intranasal immunization promotes th17 immune responses. J. Immunol. 183: 6933-6938.   DOI
40 Galli, G., K. Hancock, K. Hoschler, J. DeVos, M. Praus, M. Bardelli, C. Malzone, F. Castellino, C. Gentile, T. McNally, G. G. Del, A. Banzhoff, V. Brauer, E. Montomoli, M. Zambon, J. Katz, K. Nicholson, and I. Stephenson. 2009. Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc. Natl. Acad. Sci. U. S. A. 106: 7962-7967.   DOI
41 Maletto, B. A., A. S. Ropolo, M. V. Liscovsky, D. O. Alignani, M. Glocker, and M. C. Pistoresi-Palencia. 2005. CpG oligodeoxinucleotides functions as an effective adjuvant in aged BALB/c mice. Clin. Immunol. 117: 251-261.   DOI
42 Jackson, L. A., W. H. Chen, J. T. Stapleton, C. L. Dekker, A. Wald, R. C. Brady, S. Edupuganti, P. Winokur, M. J. Mulligan, H. L. Keyserling, K. L. Kotloff, N. Rouphael, D. L. Noah, H. Hill, and M. C. Wolff. 2012. Immunogenicity and safety of varying dosages of a monovalent 2009 H1N1 influenza vaccine given with and without AS03 adjuvant system in healthy adults and older persons. J. Infect. Dis. 206: 811-820.   DOI
43 Schneider-Ohrum, K., B. M. Giles, H. K. Weirback, B. L. Williams, D. R. DeAlmeida, and T. M. Ross. 2011. Adjuvants that stimulate TLR3 or NLPR3 pathways enhance the efficiency of influenza virus-like particle vaccines in aged mice. Vaccine 29: 9081-9092.   DOI
44 Maletto, B., A. Ropolo, V. Moron, and M. C. Pistoresi-Palencia. 2002. CpG-DNA stimulates cellular and humoral immunity and promotes Th1 differentiation in aged BALB/c mice. J. Leukoc. Biol. 72: 447-454.
45 Manning, B. M., E. Y. Enioutina, D. M. Visic, A. D. Knudson, and R. A. Daynes. 2001. CpG DNA functions as an effective adjuvant for the induction of immune responses in aged mice. Exp. Gerontol. 37: 107-126.   DOI
46 Qin, W., J. Jiang, Q. Chen, N. Yang, Y. Wang, X. Wei, and R. Ou. 2004. CpG ODN enhances immunization effects of hepatitis B vaccine in aged mice. Cell. Mol. Immunol. 1: 148-152.
47 Sen, G., Q. Chen, and C. M. Snapper. 2006. Immunization of aged mice with a pneumococcal conjugate vaccine combined with an unmethylated CpG-containing oligodeoxynucleotide restores defective immunoglobulin G antipolysaccharide responses and specific $CD4^+$-T-cell priming to young adult levels. Infect. Immun. 74: 2177-2186.   DOI
48 Alignani, D., B. Maletto, M. Liscovsky, A. Ropolo, G. Moron, and M. C. Pistoresi-Palencia. 2005. Orally administered OVA/CpG-ODN induces specific mucosal and systemic immune response in young and aged mice. J. Leukoc. Biol. 77: 898-905.   DOI
49 Sharma, S., A. L. Dominguez, D. B. Hoelzinger, and J. Lustgarten. 2008. CpG-ODN but not other TLR-ligands restore the antitumor responses in old mice: the implications for vaccinations in the aged. Cancer Immunol. Immunother. 57: 549-561.   DOI
50 Subramanian, S. and A. N. vya Shree. 2008. Enhanced Th2 immunity after DNA prime-protein boost immunization with amyloid beta (1-42) plus CpG oligodeoxynucleotides in aged rats. Neurosci. Lett. 436: 219-222.   DOI
51 Fukuyama, Y., J. D. King, K. Kataoka, R. Kobayashi, R. S. Gilbert, S. K. Hollingshead, D. E. Briles, and K. Fujihashi. 2011. A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. J. Immunol. 186: 2454-2461.   DOI
52 Haynes, L., P. J. Linton, S. M. Eaton, S. L. Tonkonogy, and S. L. Swain. 1999. Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice.J. Exp. Med. 190: 1013-1024.   DOI
53 Henson, S. M., J. Pido-Lopez, and R. Aspinall. 2004. Reversal of thymic atrophy. Exp. Gerontol. 39: 673-678.   DOI
54 Min, D., A. Panoskaltsis-Mortari, O. Kuro, G. A. Hollander, B. R. Blazar, and K. I. Weinberg. 2007. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109: 2529-2537.   DOI
55 Moretto, M. M., E. M. Lawlor, and I. A. Khan. 2008. Aging mice exhibit a functional defect in mucosal dendritic cell response against an intracellular pathogen. J. Immunol. 181: 7977-7984.   DOI
56 Kantele, A., J. Zivny, M. Hakkinen, C. O. Elson, and J. Mestecky. 1999. Differential homing commitments of antigen- specific T cells after oral or parenteral immunization in humans. J. Immunol. 162: 5173-5177.
57 Kong, I. G., A. Sato, Y. Yuki, T. Nochi, H. Takahashi, S. Sawada, M. Mejima, S. Kurokawa, K. Okada, S. Sato, D. E. Briles, J. Kunisawa, Y. Inoue, M. Yamamoto, K. Akiyoshi, and H. Kiyono. 2013. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect. Immun. 81: 1625-1634.   DOI
58 Romero-Steiner, S., D. M. Musher, M. S. Cetron, L. B. Pais, J. E. Groover, A. E. Fiore, B. D. Plikaytis, and G. M. Carlone. 1999. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin. Infect. Dis. 29: 281-288.   DOI
59 Fayad, R., H. Zhang, D. Quinn, Y. Huang, and L. Qiao. 2004. Oral administration with papillomavirus pseudovirus encoding IL-2 fully restores mucosal and systemic immune responses to vaccinations in aged mice. J. Immunol. 173: 2692-2698.   DOI
60 Fujihashi, K., and H. Kiyono. 2009. Mucosal immunosenescence: new developments and vaccines to control infectious diseases. Trends Immunol. 30: 334-343.   DOI
61 Kurebayashi, S., E. Ueda, M. Sakaue, D. D. Patel, A. Medvedev, F. Zhang, and A. M. Jetten. 2000. Retinoid-related orphan receptor $\gamma$ (ROR$\gamma$) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl. Acad. Sci. U. S. A. 97: 10132-10137.   DOI
62 Xu, J., W. Dai, Z. Wang, B. Chen, Z. Li, and X. Fan. 2011. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin. Vaccine Immunol. 18: 75-81.   DOI
63 Shapiro, E. D., A. T. Berg, R. Austrian, D. Schroeder, V. Parcells, A. Margolis, R. K. Adair, and J. D. Clemens. 1991. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N. Engl. J. Med. 325: 1453-1460.   DOI
64 Ferreira, D. M., M. Darrieux, D. A. Silva, L. C. Leite, J. M. Ferreira, Jr., P. L. Ho, E. N. Miyaji, and M. L. Oliveira. 2009. Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin. Vaccine Immunol. 16: 636-645.   DOI
65 Lu, Y. J., J. Gross, D. Bogaert, A. Finn, L. Bagrade, Q. Zhang, J. K. Kolls, A. Srivastava, A. Lundgren, S. Forte, C. M. Thompson, K. F. Harney, P. W. Anderson, M. Lipsitch, and R. Malley. 2008. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 4: e1000159.   DOI
66 Fukuiwa, T., S. Sekine, R. Kobayashi, H. Suzuki, K. Kataoka, R. S. Gilbert, Y. Kurono, P. N. Boyaka, A. M. Krieg, J. R. McGhee, and K. Fujihashi. 2008. A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 26: 4849-4859.   DOI