• Title/Summary/Keyword: Narrow crack

Search Result 67, Processing Time 0.026 seconds

A Study on the Development of Crack Diagnosis Robot for Reinforced Concrete Structures Based on Image Processing (이미지 프로세싱 기반 철근콘크리트 구조물의 균열진단 로봇 개발에 관한 연구)

  • Kim, Han-Sol;Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.103-104
    • /
    • 2022
  • Cracks may occur in reinforced concrete (RC) structures due to various physical and chemical factors, and the growth of cracks causes deterioration of the structure's performance. It is important to prevent the expansion of cracks through periodic diagnosis of cracks in structures. In order to enable free crack exploration even in a narrow space, a construction robot using a Mecanum wheel that can move up, down, left and right and rotate in place was designed. High-quality crack images were periodically collected through the camera, and the image fragments stored during the exploration were combined into a single photo after the exploration was completed. The robot detected cracks with a width of 0.2 mm or more on the concrete probe surface with an accuracy of about 90% or more.

  • PDF

The Fatigue Behavior of Tailored Welded Blank Sheet Metal by Laser Beam (레이저를 이용한 Tailored Blank 용접 판재의 피로거동)

  • 오택열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.48-55
    • /
    • 2000
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimens was joined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm) .As a base test, mechanical properties around weld zone were examined . The results indicated that there were no significant decreases in mechanical properties , but hardness around weld bead was 2.3 times greater than base material . The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimens and base metal was different, and it was increased by 25% when pres-strain was applied. The crack propagation rate was noticeably decreased around weld line and rapidly increased as it passed through weld line. Reviewing the shape of the crack propagation , crack width around weld line was around the weld zone due to retardation of crack growth , but is became narrow passing weld line due to decreased toughness.

  • PDF

The Fatigue Behavior of Laser Welded Sheet Metal (레이저 용접 판재의 피로거동)

  • 오택열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.339-344
    • /
    • 1999
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimen was machined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm). As a base test, mechanical properties around welding zone were examined. The results indicated that there were no significant decreases in mechanical properties, but hardness around welding bead is 2.3 times greater than base material. The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimen and base material was different, and it is increased by 25% when pre-strain was applied. The crack propagation rate was noticeable decreased around welding line and rapidly increased as it passed by welding line. Reviewing the shape of the crack propagation, crack width around welding line was wide around the welding zone due to retardation of crack growth, but it became narrow passing welding line due to decreased toughness.

  • PDF

Early Diagnosis and Proper Treatment of Cracked tooth (Cracked tooth (금이 간 치아)의 조기 진단 및 적절한 치료)

  • Kim, Sin-Young
    • The Journal of the Korean dental association
    • /
    • v.57 no.7
    • /
    • pp.403-411
    • /
    • 2019
  • A cracked tooth is defined as an incomplete fracture initiated from the crown and extending subgingivally and usually directed mesiodistally. Cracked teeth were most frequently involved in mandibular and maxillary molars at the age of 50s. Cracks occurred mainly in nonbonded restorations such as gold and amalgam, and majority of cracks were found in intact teeth. A pulpal and periapical diagnosis is dependent on the extent of the crack and duration of the symptom. The pulp of a cracked tooth might become inflamed because of microleakage, which induces thermal sensitivity. Once the crack has extended and exposed the pulp, severe pulp and periapical pathosis will likely be present. In addition, the extended crack can cause a bony dehiscence with a resulting narrow and deep periodontal pocket. Therefore, early diagnosis of the cracked tooth and proper treatment planning are important for clinician.

  • PDF

Experimental study on water exchange between crack and clay matrix

  • Song, Lei;Li, Jinhui;Garg, Ankit;Mei, Guoxiong
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Cracks in soil provide significant preferential pathways for contaminant transport and rainfall infiltration. Water exchange between the soil matrix and crack is crucial to characterize the preferential flow, which is often quantitatively described by a water exchange ratio. The water exchange ratio is defined as the amount of water flowing from the crack into the clay matrix per unit time. Most of the previous studies on the water exchange ratio mainly focused on cracked sandy soils. The water exchange between cracks and clay matrix were rarely studied mainly due to two reasons: (1) Cracks open upon drying and close upon wetting. The deformable cracks lead to a dynamic change in the water exchange ratio. (2) The aperture of desiccation crack in clay is narrow (generally 0.5 mm to 5 mm) which is difficult to model in experiments. This study will investigate the water exchange between a deformable crack and the clay matrix using a newly developed experimental apparatus. An artificial crack with small aperture was first fabricated in clay without disturbing the clay matrix. Water content sensors and suction sensors were instrumented at different places of the cracked clay to monitor the water content and suction changes. Results showed that the water exchange ratio was relatively large at the initial stage and decreased with the increasing water content in clay matrix. The water exchange ratio increased with increasing crack apertures and approached the largest value when the clay was compacted at the water content to the optimal water content. The effective hydraulic conductivity of the crack-clay matrix interface was about one order of magnitude larger than that of saturated soil matrix.

A Study for Concrete Crack Minimize Methods in Large Section Tunnel Lining (라이닝 시공특성을 고려한 대단면 4차로 터널 균열최소화 방안에 대한 연구)

  • Choo, Seok-Yeon;Lee, Jae-Sung;Koh, Sung-Yil;Kim, Sang-Whang;Ra, Kyong-Woong;Kim, Tae-Hyok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.621-628
    • /
    • 2005
  • The concrete lining in tunnel performs structural and nonstructural functions. The concrete lining works as a structural member for released load and residual water pressure in NATM tunnel system. Also concrete lining used for finishing the tunnel surface. The initial crack of concrete lining is reported because of difficulties in construction process, which concrete is injected into 30$\sim$40cm narrow gap between lining form and tunnel surface through 500${\times}$600mm small injection holes in the form. In this paper, we research a reason of initial crack occurrence by the case study of 4 lane wide span tunnel, and propose an improved method for crack minimization in construction process. We verify that the proposed method can give qualified concrete lining by carrying out the concrete injection model test and the numerical analysis of concrete flow.

  • PDF

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

A Study on Growth Behavior of Small Fatigue Crack in 304 Stainless Steel at Elevated Temperatures (고온하 304 스테인레스강의 작은 표면구열의 성장거동에 관한 연구)

  • 서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.87-95
    • /
    • 1990
  • Rotating bending fatigue tests of an authentic steel 304 were performed at various temperatures such as room temperature, $538^{\circ}$ and $593^{\circ}C$. The plastic replica method was also applied in order to estimate the fatigue life on the basis of serial observation of small fatigue crack initiation and growth on the pit specimen surface. The fatigue crack growth behavior of 304 stainless steel was investigated within the frame work of elastic-plastic fracture mechanics within a narrow scatterband in spite of different stress levels at elevated temperature as at room temperature. The growth law of small surface crack is determined uniquely by the term. $\DELTA\sigma^{n}a$ where $\DELTA\sigma$ is the stress amplitude, a is the crack length, and n is a constant. It is found that the small crack growth behavior is basically equivalent to the S-$N_{f}$ relationship, where S and $N_{f}$ are stress and number of cycles to failure, and the fatigue life prediction is in good agreement with the experimental results.

Fatigue Crack Growth, Coalescence Behavior and its Simulation on Multi-Surface Cracks Under the Elevated Temperature (고온하 복수 표면균열의 성장 합체거동과 시뮬레이션에 관한 연구)

  • 서창민;황남성;윤기봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.142-151
    • /
    • 1995
  • A simulation program concerned with multi-surface fatigue cracks which initiated at the semi-circular surface notches has been developed to predict their growth and coalescence behaviors at the elevated temperature. Three kinds of coalescence models such as SPC(surface point connection), ASME and BSI(British Standards Institution) conditions were applied, and the results of the simulation were compared with those of the experiment. This simulation is able to enhance the reliance and integrity of structures especially under the elevated temperature which have lots of difficulties in experiments and applications. This shows that the simulation result has utility for fatigue life prediction. Even though all the specimens were the same shape, the error rate was increased in accordance with the applied stress to the specimen. Among the material constants C and m in the narrow band, the results applied upper values of the band to the simulation has shown quite small error compared with the experiment results.

  • PDF

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.