• Title/Summary/Keyword: Naphthalene acetic acid

Search Result 55, Processing Time 0.027 seconds

High-frequency shoot regeneration from leaf explants through organogenesis in bitter melon (Momordica charantia L.)

  • Thiruvengadam, Muthu;Rekha, K.T.;Yang, Chang-Hsien;Jayabalan, Narayanasamypillai;Chung, Ill-Min
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.321-328
    • /
    • 2010
  • An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature leaf explants of Momordica charantia, a very important vegetable and medicinal plant. Calluses were induced from immature leaf explants excised from in vitro (15-day-old seedlings) mature leaf explants of vivo plants (45 days old). The explants were grown on Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g $1^{-1}$ sucrose, 2.2 g $1^{-1}$ Gelrite, and 7.7 lM naphthalene acetic acid (NAA) with 2.2 ${\mu}M$ thidiazuron (TDZ). Regeneration of adventitious shoots from callus (30-40 shoots per explant) was achieved on MS medium containing 5.5 ${\mu}M$ TDZ, 2.2 ${\mu}M$ NAA, and 3.3 ${\mu}M$ silver nitrate ($AgNO_3$). The shoots (1.0 cm length) were excised from callus and elongated in MS medium fortified with 3.5 ${\mu}M$ gibberellic acid ($GA_3$). The elongated shoots were rooted in MS medium supplemented with 4.0 ${\mu}M$ indole 3-butyric acid (IBA). Rooted plants were acclimatized in the greenhouse and subsequently established in soil with a survival rate of 90%. This protocol yielded an average of 40 plants per leaf explant with a culture period of 98 days.

Effects of Medium Compositions and Plant Growth Regulators on in vitro Organogenesis in Cultured Explants of Platycodon grandiflorum Species

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Kim, Hye-Rim;Moon, Young-Ja;Yoon, Ki-Hong;Woo, Sun Hee;Boo, Hee Ock;Koo, Jin-Woog;Kim, Hag Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.259-274
    • /
    • 2017
  • Platycodon grandiflorum (Bell flower) is an important plant that has traditionally been used as herbal medicine for the treatment of cough, phlegm, sore throats, lung abscesses, chest pains, dysuria, and dysentery. The present study was initiated to investigate the feasibility of inducing shoot and root organogenesis in cultured explants of P. grandiflorum in a range of culture media and through use of various plant growth regulators (PGRs). The plantlets (Stem containing one node) were isolated and cultured on different concentrations of Murashige and Skoog (MS) medium supplemented with PGRs. We found that proliferation and elongation of shoots and roots could be achieved on 1/4 MS for P. grandiflorum with wild and green petals and on 1/8 MS for P. grandiflorum with double petals. The highest levels of development and elongation of adventitious shoots and roots were observed when petal explants were cultured on 1/4 MS (pH 3.8) supplemented with 5% sucrose. Increasing the agar concentration reduced shoot growth and rooting potential; nevertheless, the highest number of shoots and roots was observed on 0.6% agar. In the case of growth regulators, 1/4 MS supplemented with $1mg\;L^{-1}$ 6-benzylaminopurine (BA) was found to be best for shooting, although higher concentrations of BA tended to reduce shoot and root elongation. The highest number of shoots was achieved on $0.5mg{\cdot}L^{-1}$ thidiazuron (TDZ) from double petal explants grown on 1/8 MS. However, root and shoot elongation were found to decrease when TDZ concentrations were increased. Low concentrations of kinetin, naphthalene acetic acid, indole acetic acid, and 3-indole butyric acid induced shoot and root proliferation and elongation. Taken together, our study showed that low concentrations of PGRs induced the greatest root formation and elongation, showing that the optimal concentration of PGRs for shoot proliferation was species-dependent.

Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin

  • Baque, Md. Abdullahil;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 $mg\;l^{-1}$ indole butyric acid (IBA) and at 7 and 9 $mg\;l^{-1}$ naphthalene acetic acid (NAA). On the other hand, 9 $mg\;l^{-1}$ NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 $mg\;l^{-1}$ IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 $mg\;l^{-1}$) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 $mg\;l^{-1}$) in combination with 5 $mg\;l^{-1}$ IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including 1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites. These results suggest that 5 $mg\;l^{-1}$ IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia.

Production of Inhibitory Compounds against Helicobacter pylori by Culture Condition of Morus alba cv. Cheongmoknosang Callus (청목노상(Morus alba cv. Cheongmoknosang) callus의 배양조건에 따른 Helicobacter pylori 억제물질의 생산)

  • Cho, Young-Je;Cha, Won-Seup;Kang, Sun-Ae;An, Bong-Jeun;Ahn, Dong-Hyun;Kim, Myung-Uk;Chae, Jung-Woo
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.368-376
    • /
    • 2013
  • The optimal condition for Morus alba cv was an MS culture medium at $27^{\circ}C$ for 20 days. Cheongmoknosang callus showed inhibitory activity against Helicobacter pylori at 1.05 g of wet weight of the cultured callus. The callus formation of Morus alba cv. Cheongmoknosang was influenced by naphthalene acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D), 6-benzylaminopurine (BA) and kinetin at concentrations of 2 mg/l. The growth rate of callus was higher than it was when these hormones were mixed with a single hormone. Thus, the optimal condition for direct callogenesis was to incubate with mixture (2,4-D/NAA) of 2 mg/l concentration at $27^{\circ}C$ for 20 days. Moreover, the optimal culture condition of the biomass in the mass production of inhibitory compounds against Helicobacter pylori from Morus alba cv. Cheongmoknosang callus was to incubate in an MS broth (each concentration 1 mg/l of 2,4-D and BA). When Morus alba cv. Cheongmoknosang callus were incubated for 20 days in a bioreactor, Helicobacter pylori inhibition of callus extracts was the highest at a clear zone of 16 mm.

In vitro plant regeneration from axillary buds of Hibiscus syriacus L.

  • Jeon, Seo-Bum;Kang, Seung-Won;Kim, Wan-Soon;Lee, Gung-Pyo;Kim, Sun-Hyung;Seo, Sang-Gyu
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.174-178
    • /
    • 2009
  • Presently, we report a simple, reproducible and high frequency plant regeneration in Hibiscus syriacus L. using axillary buds. H. syriacus was regenerated from axillary buds directly or through a callus phase. Regenerated shoots were directly induced from young and fresh axillary buds cultured on Murashige and Skoog medium (MS) supplemented with 0.01 mg/L of the growth regulator thidiazuron (TDZ) after 2 weeks of culture. Directly induced shoots were transferred to hormone-free MS medium and root development was observed after 6 weeks. On the other hand, old and stale axillary buds were regenerated to shoots via callus induction on MS medium containing 0.01–2 mg/L TDZ after 4 weeks. A TDZ concentration of 0.01 mg/L was most effective in callus formation. Green callus was transferred to MS medium containing 0.01 mg/L α-naphthalene acetic acid (NAA) and 0.5 mg/L benzylaminopurine (BA). After 4 weeks, callus had developed into multiple shoots. Plantlets were formed from 10 week cultures of single shoots on hormone-free MS medium. Regenerated plantlets were cultured on MS medium for one month and then transferred to pots containing garden soil. Potted plants were acclimatized for one month and grown to maturity under greenhouse conditions. The present study has shown that various concentrations of plant growth regulator can be effective for in vitro plant regeneration of H. syriacus. The direct and indirect regeneration protocol presented here will be useful for understanding the manipulation and propagation of H. syriacus.

Production of Adventitious Ginseng Roots Using Biorectors

  • Yu, Kee-Won;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.309-315
    • /
    • 2000
  • Panax ginseng is an important medicinal plant that has been used worldwide for geriatric, tonic, stomachic, and aphrodisiac treatments. Ginsenosides contained in the ginseng root are the main substances having active functions for human body. The price of ginseng is very expensive due to a complex process of cultivation, and the yield of ginseng is limited, which cannot meet the demand of the increasing market. Researchers have applied plant biotechnology to solve the problems but there are still things to be determined towards ginsenoside production by large-scale adventitious root culture. In this experiment, 5 to 20 liter bioreactors were employed to determine optimal conditions for adventitious root culture and ginsenoside production of Panax gineng. Callus was induced from the ginseng root on MS agar medium containing 1.0 mg. $L^{-1}$ 2,4-D and 0.1 mg. $L^{-1}$ kinetin. Then the callus was cultured on MS agar medium supplemented with 2.0 mg. $L^{-1}$ IBA, 0.1 mg. $L^{-1}$ kinetin, and 30 g. $L^{-1}$ to induce adventitious roots. The maximum root growth and ginsenoside production were obtained in 1/2 MS medium. 2.0 mg. $L^{-1}$ naphthalene acetic acid resulted in greater root growth than 2.0 mg $L^{-1}$ indole-3-butyric acid. Ginsenoside content increased with 2.0 mg. $L^{-1}$ benzyl adenin or kinetin. High concentrations of benzyl adenin (above 3.0 mg. $L^{-1}$ ) decreased the adventitious root growth and ginsenoside productivity. N $H_{4}$$^{+}$ inhibited the ginsenoside accumulation, while high concentrations of $K^{+}$, $Mg_{2}$$^{+}$, and $Ca_{2}$$^{+}$ increased it. N $H_{4}$$^{+}$ at 0.5 and 1.0 times of the normal amount in 3/4 SH medium resulted in the greatest biomass increase, but the highest ginsenoside productivity was obtained when N $O_{3}$$^{-}$ was used as the sole nitrogen source in the medium. Most microelements at high concentrations in the medium inhibited the root growth, but high concentrations of MnS $O_4$enhanced the root growth. Root dry weight increased with increasing sucrose concentrations up to 50 g. $L^{-1}$ , but decreased from 70 g $L^{-1}$ Ginsenoside productivity was maximized at the range of 20 to 30 g. $L^{-1}$ sucrose. In the experiment on bioreactor types, cone and balloon types were determined to be favorable for both adventitious root growth and ginsenoside production. Jasmonic acid was effective for increasing ginsenoside contents and Rb group ginsenosides mainly increased. These results could be employed in commercial scale bioreactor cultures of Panax ginseng.x ginseng.

  • PDF

Production of biomass and bioactive compounds from adventitious root cultures of Polygonum multiflorum using air-lift bioreactors (생물반응기를 이용한 적하수오 부정근의 바이오매스와 생리활성물질 대량생산)

  • Lee, Kyung-Ju;Park, Youngki;Kim, Ja-Young;Jeong, Taek-Kyu;Yun, Kyung-Seop;Paek, Kee-Yoeup;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • This study was conducted to investigate the productivity of biomass and antioxidant compounds in Polygonum multiflorum by culturing explants in air-lift bioreactor containing Murashige and Skoog (MS) medium, by adding different concentrations of auxins [indole-3-butyric acid (IBA) and naphthalene acetic acid (NAA)], sucrose, methyl jasmonate (MeJA), and salicylic acid (SA). Results of this study revealed that the explants culturing on the medium supplemented with $9.84{\mu}M$ IBA and 50 g/L sucrose were observed to have higher productivity of biomass and bioactive compound than other treatments used. Thus, we expect that these results will be helpful for large-scale production of biomass and antioxidant compounds from Polygonum multiflorum.

Isolation and Expression Analysis of a GDSL-like Lipase Gene from Brassica napus L.

  • Ling, Hua;Zhao, Jingya;Zuo, Kaijing;Qiu, Chengxiang;Yao, Hongyan;Qin, Jie;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.297-303
    • /
    • 2006
  • As lipolytic enzymes, GDSL lipases play an important role in plant growth and development. In order to identify their functions and roles, the full-length cDNA of a GDSL lipase gene, designated BnLIP2, was isolated from Brassica napus L. BnLIP2 was 1,300 bp long, with 1,122 bp open reading frame (ORF) encoding 373 amino acid residues. Sequence analysis indicated that BnLIP2 belonged to GDSL family. Southern blot analysis indicated that BnLIP2 belonged to a small gene family in rapeseed genome. RT-PCR analysis revealed that BnLIP2 was a tissue-specific expressing gene during reproductive growth and strongly expressed during seed germination. BnLIP2 expression could not be detected until three days after germination, and it subsequently became stronger. The transcript of this gene was deficient in root of seedlings growing at different stages. When juvenile seedlings were treated by methyl jasmonate (MeJ), salicylic acid (SA) and naphthalene acetic acid (NAA), BnLIP2 expression could not be induced in root. Our study implicates that BnLIP2 probably plays an important role in rapeseed germination, morphogenesis, flowering, but independent of root growth and development.

Optimal Medium Compositions for Plant Regeneration via Adventitious Shoot Formation Using 'Fuji' Apple Leaf Explants (사과 '후지'의 잎 절편체로부터 신초 기관형성을 통한 식물체 재생에 적합한 배지조성)

  • Lee, Yoon Kyung;;Hyung, Nam-In
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.310-317
    • /
    • 2019
  • Plant regeneration protocols for adventitious shoot organogenesis from apple (Malus domestica 'Fuji') leaf explants were developed in the present study. The effects of different basal media, types and concentrations of carbon sources, and concentrations of plant growth regulators were evaluated to determine the optimal shoot regeneration conditions for 'Fuji' apple leaf explants. On different treatments involving combinations of basal media, LS and N6 media, and different types and concentrations of cytokinins, 6-benzyl-adenine (BA) and thidiazuron (TDZ), shoot regeneration rates were the highest in the N6 medium combined with BA. Among the plant growth regulator and carbon source combination treatments, 5.0 mg/L BA, and 0.1 mg/L α-naphthalene acetic acid (NAA) with 40 g/L sorbitol was the optimal combination for shoot regeneration. In addition, the optimal sorbitol concentrations for shoot regeneration were 40 g/L and 60 g/L. The highest regeneration (81.8%) was achieved using 40 g/L sorbitol. The regenerated shoots elongated and rooted on rooting medium, consisting of 1/4 MS medium with 0.2 mg/L indole-3-butyric acid (IBA). The plantlets were acclimatized and the regenerated plants exhibited normal phenotypes.

Production of Hydroxymethylfurfrual by Sesamum indicum L. Root Cultures (참깨 뿌리배양에 의한 hydroxymethylfurfrual 생산)

  • Chun, Jae-An;Lee, Jin-Woo;Yi, Young-Byung;Hong, Seong-Sig;Cho, Kang-Jin;Chung, Chung-Han
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1836-1840
    • /
    • 2009
  • Recently, hydroxymethylfurfrual (HMF) has been highlighted as a key intermediate for the production of liquid biofuels and other valuable compounds. We used sesame roots as a biocatalyst to synthesize HMF using flask cultures. The synthesis of HMF was identified by GC-mass analysis. The highest root growth was observed in cultures with 1.0 mg/l NAA at $30^{\circ}C$, while root growth was not found in those without NAA treatment. When silver nitrate ($AgNO_3$) was added, the root growth was greatest in those treated with 0.5 mg/l $AgNO_3$ and cultured at $30^{\circ}C$. In the case of HMF synthesis, its highest yield was obtained in those treated with 0.5 mg/l NAA at $25^{\circ}C$, but low HMF was detected in those treated without naphthaleneacetic acid (NAA). The addition of $AgNO_$ to the culture medium showed a 8-10% reduction in HMF yield compared to that of the control, indicating its inhibitory effect on the synthesis of HMF. On the whole, an optimal culture temperature for HMF synthesis seemed to be between $25-30^{\circ}C$.