• 제목/요약/키워드: Naphthalene acetic acid

검색결과 55건 처리시간 0.038초

High-frequency shoot regeneration from leaf explants through organogenesis in bitter melon (Momordica charantia L.)

  • Thiruvengadam, Muthu;Rekha, K.T.;Yang, Chang-Hsien;Jayabalan, Narayanasamypillai;Chung, Ill-Min
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.321-328
    • /
    • 2010
  • An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature leaf explants of Momordica charantia, a very important vegetable and medicinal plant. Calluses were induced from immature leaf explants excised from in vitro (15-day-old seedlings) mature leaf explants of vivo plants (45 days old). The explants were grown on Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g $1^{-1}$ sucrose, 2.2 g $1^{-1}$ Gelrite, and 7.7 lM naphthalene acetic acid (NAA) with 2.2 ${\mu}M$ thidiazuron (TDZ). Regeneration of adventitious shoots from callus (30-40 shoots per explant) was achieved on MS medium containing 5.5 ${\mu}M$ TDZ, 2.2 ${\mu}M$ NAA, and 3.3 ${\mu}M$ silver nitrate ($AgNO_3$). The shoots (1.0 cm length) were excised from callus and elongated in MS medium fortified with 3.5 ${\mu}M$ gibberellic acid ($GA_3$). The elongated shoots were rooted in MS medium supplemented with 4.0 ${\mu}M$ indole 3-butyric acid (IBA). Rooted plants were acclimatized in the greenhouse and subsequently established in soil with a survival rate of 90%. This protocol yielded an average of 40 plants per leaf explant with a culture period of 98 days.

Effects of Medium Compositions and Plant Growth Regulators on in vitro Organogenesis in Cultured Explants of Platycodon grandiflorum Species

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Kim, Hye-Rim;Moon, Young-Ja;Yoon, Ki-Hong;Woo, Sun Hee;Boo, Hee Ock;Koo, Jin-Woog;Kim, Hag Hyun
    • 한국작물학회지
    • /
    • 제62권3호
    • /
    • pp.259-274
    • /
    • 2017
  • Platycodon grandiflorum (Bell flower) is an important plant that has traditionally been used as herbal medicine for the treatment of cough, phlegm, sore throats, lung abscesses, chest pains, dysuria, and dysentery. The present study was initiated to investigate the feasibility of inducing shoot and root organogenesis in cultured explants of P. grandiflorum in a range of culture media and through use of various plant growth regulators (PGRs). The plantlets (Stem containing one node) were isolated and cultured on different concentrations of Murashige and Skoog (MS) medium supplemented with PGRs. We found that proliferation and elongation of shoots and roots could be achieved on 1/4 MS for P. grandiflorum with wild and green petals and on 1/8 MS for P. grandiflorum with double petals. The highest levels of development and elongation of adventitious shoots and roots were observed when petal explants were cultured on 1/4 MS (pH 3.8) supplemented with 5% sucrose. Increasing the agar concentration reduced shoot growth and rooting potential; nevertheless, the highest number of shoots and roots was observed on 0.6% agar. In the case of growth regulators, 1/4 MS supplemented with $1mg\;L^{-1}$ 6-benzylaminopurine (BA) was found to be best for shooting, although higher concentrations of BA tended to reduce shoot and root elongation. The highest number of shoots was achieved on $0.5mg{\cdot}L^{-1}$ thidiazuron (TDZ) from double petal explants grown on 1/8 MS. However, root and shoot elongation were found to decrease when TDZ concentrations were increased. Low concentrations of kinetin, naphthalene acetic acid, indole acetic acid, and 3-indole butyric acid induced shoot and root proliferation and elongation. Taken together, our study showed that low concentrations of PGRs induced the greatest root formation and elongation, showing that the optimal concentration of PGRs for shoot proliferation was species-dependent.

Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin

  • Baque, Md. Abdullahil;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.109-116
    • /
    • 2010
  • Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 $mg\;l^{-1}$ indole butyric acid (IBA) and at 7 and 9 $mg\;l^{-1}$ naphthalene acetic acid (NAA). On the other hand, 9 $mg\;l^{-1}$ NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 $mg\;l^{-1}$ IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 $mg\;l^{-1}$) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 $mg\;l^{-1}$) in combination with 5 $mg\;l^{-1}$ IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including 1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites. These results suggest that 5 $mg\;l^{-1}$ IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia.

청목노상(Morus alba cv. Cheongmoknosang) callus의 배양조건에 따른 Helicobacter pylori 억제물질의 생산 (Production of Inhibitory Compounds against Helicobacter pylori by Culture Condition of Morus alba cv. Cheongmoknosang Callus)

  • 조영제;차원섭;강선애;안봉전;안동현;김명욱;채정우
    • 생명과학회지
    • /
    • 제23권3호
    • /
    • pp.368-376
    • /
    • 2013
  • Helicobacter pylori 억제효과가 우수한 청목노상의 캘러스 배양을 위한 최적조건은 MS 고체배지에서 $27^{\circ}C$에서 20일간 배양하였을 때 6.4 mm의 크기로 가장 크게 자랐으며, 청목노상의 callus 형성에 미치는 생장조절제로는 NAA, 2,4-D, BA 및 kinetin 등을 2 mg/l의 농도로 첨가하여 $27^{\circ}C$에서 20일간 배양했을 때 높은 캘러스 성장률을 확인 할 수 있었고, 생장조절제의 혼합처리구가 단독처리구 보다 캘러스 형성율이 높은 것을 확인 할 수 있다. 따라서 본 연구에 사용된 청목노상 품종의 평판기내 배양을 위한 direct callogenesis의 최적 조건은 생장호르몬으로 2,4-D/NAA를 2 mg/l의 농도로 혼합 처리하여 $27^{\circ}C$에서 20일간 배양이 최적조건이었다. 청목노상 callus로부터 Helicobacter pylori 억제물질의 대량생산을 위한 방법인 biomass를 위한 bioreactor배양은 MS 액체배지에 호르몬으로 2,4-D와 BA를 각각 1 mg/l의 농도로 처리하여 20일간 배양하였을 때가 최적조건이었다. 최적조건에서 배양한 callus 추출물의 Helicobacter pylori 에 대한 억제효과는 16 mm의 clear zone으로 가장 높은 저해율을 확인할 수 있었다.

In vitro plant regeneration from axillary buds of Hibiscus syriacus L.

  • Jeon, Seo-Bum;Kang, Seung-Won;Kim, Wan-Soon;Lee, Gung-Pyo;Kim, Sun-Hyung;Seo, Sang-Gyu
    • Journal of Plant Biotechnology
    • /
    • 제36권2호
    • /
    • pp.174-178
    • /
    • 2009
  • Presently, we report a simple, reproducible and high frequency plant regeneration in Hibiscus syriacus L. using axillary buds. H. syriacus was regenerated from axillary buds directly or through a callus phase. Regenerated shoots were directly induced from young and fresh axillary buds cultured on Murashige and Skoog medium (MS) supplemented with 0.01 mg/L of the growth regulator thidiazuron (TDZ) after 2 weeks of culture. Directly induced shoots were transferred to hormone-free MS medium and root development was observed after 6 weeks. On the other hand, old and stale axillary buds were regenerated to shoots via callus induction on MS medium containing 0.01–2 mg/L TDZ after 4 weeks. A TDZ concentration of 0.01 mg/L was most effective in callus formation. Green callus was transferred to MS medium containing 0.01 mg/L α-naphthalene acetic acid (NAA) and 0.5 mg/L benzylaminopurine (BA). After 4 weeks, callus had developed into multiple shoots. Plantlets were formed from 10 week cultures of single shoots on hormone-free MS medium. Regenerated plantlets were cultured on MS medium for one month and then transferred to pots containing garden soil. Potted plants were acclimatized for one month and grown to maturity under greenhouse conditions. The present study has shown that various concentrations of plant growth regulator can be effective for in vitro plant regeneration of H. syriacus. The direct and indirect regeneration protocol presented here will be useful for understanding the manipulation and propagation of H. syriacus.

Production of Adventitious Ginseng Roots Using Biorectors

  • Yu, Kee-Won;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • 식물조직배양학회지
    • /
    • 제27권4호
    • /
    • pp.309-315
    • /
    • 2000
  • Panax ginseng is an important medicinal plant that has been used worldwide for geriatric, tonic, stomachic, and aphrodisiac treatments. Ginsenosides contained in the ginseng root are the main substances having active functions for human body. The price of ginseng is very expensive due to a complex process of cultivation, and the yield of ginseng is limited, which cannot meet the demand of the increasing market. Researchers have applied plant biotechnology to solve the problems but there are still things to be determined towards ginsenoside production by large-scale adventitious root culture. In this experiment, 5 to 20 liter bioreactors were employed to determine optimal conditions for adventitious root culture and ginsenoside production of Panax gineng. Callus was induced from the ginseng root on MS agar medium containing 1.0 mg. $L^{-1}$ 2,4-D and 0.1 mg. $L^{-1}$ kinetin. Then the callus was cultured on MS agar medium supplemented with 2.0 mg. $L^{-1}$ IBA, 0.1 mg. $L^{-1}$ kinetin, and 30 g. $L^{-1}$ to induce adventitious roots. The maximum root growth and ginsenoside production were obtained in 1/2 MS medium. 2.0 mg. $L^{-1}$ naphthalene acetic acid resulted in greater root growth than 2.0 mg $L^{-1}$ indole-3-butyric acid. Ginsenoside content increased with 2.0 mg. $L^{-1}$ benzyl adenin or kinetin. High concentrations of benzyl adenin (above 3.0 mg. $L^{-1}$ ) decreased the adventitious root growth and ginsenoside productivity. N $H_{4}$$^{+}$ inhibited the ginsenoside accumulation, while high concentrations of $K^{+}$, $Mg_{2}$$^{+}$, and $Ca_{2}$$^{+}$ increased it. N $H_{4}$$^{+}$ at 0.5 and 1.0 times of the normal amount in 3/4 SH medium resulted in the greatest biomass increase, but the highest ginsenoside productivity was obtained when N $O_{3}$$^{-}$ was used as the sole nitrogen source in the medium. Most microelements at high concentrations in the medium inhibited the root growth, but high concentrations of MnS $O_4$enhanced the root growth. Root dry weight increased with increasing sucrose concentrations up to 50 g. $L^{-1}$ , but decreased from 70 g $L^{-1}$ Ginsenoside productivity was maximized at the range of 20 to 30 g. $L^{-1}$ sucrose. In the experiment on bioreactor types, cone and balloon types were determined to be favorable for both adventitious root growth and ginsenoside production. Jasmonic acid was effective for increasing ginsenoside contents and Rb group ginsenosides mainly increased. These results could be employed in commercial scale bioreactor cultures of Panax ginseng.x ginseng.

  • PDF

생물반응기를 이용한 적하수오 부정근의 바이오매스와 생리활성물질 대량생산 (Production of biomass and bioactive compounds from adventitious root cultures of Polygonum multiflorum using air-lift bioreactors)

  • 이경주;박영기;김자영;정택규;윤경섭;백기엽;박소영
    • Journal of Plant Biotechnology
    • /
    • 제42권1호
    • /
    • pp.34-42
    • /
    • 2015
  • 본 연구는 약용식물인 적하수오의 부정근과 생리활성물질 대량생산을 위해 생물반응기 배양 조건을 확립하고자 실시되었다. 이를 위하여 생물반응기 배양 시 배지 내 무기물 함량과, auxin의 종류와 농도, sucrose 농도가 적하수오 부정근의 생장과 총 phenolics와 flavonoids 함량에 미치는 영향을 조사하였으며, 배양 중 methyl jasmonate (MeJA)와 salicylic acid (SA)의 첨가가 생리활성물질 축적에 미치는 영향을 조사하였다. 그 결과 $9.84{\mu}M$ IBA와 50 g/L sucrose가 첨가된 1배 MS배지에서 최적의 부정근 생장이 이루어졌으며 생리활성물질 축적도 가장 높았다. MeJA와 SA 처리시 적하수오 부정근의 생장과 생리활성물질 축적은 오히려 감소하였다. 본 연구 결과는 산업적 목적을 위한 적하수오의 부정근과 생리활성물질 대량생산시 기초자료로 활용될 수 있을 것으로 기대된다.

Isolation and Expression Analysis of a GDSL-like Lipase Gene from Brassica napus L.

  • Ling, Hua;Zhao, Jingya;Zuo, Kaijing;Qiu, Chengxiang;Yao, Hongyan;Qin, Jie;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.297-303
    • /
    • 2006
  • As lipolytic enzymes, GDSL lipases play an important role in plant growth and development. In order to identify their functions and roles, the full-length cDNA of a GDSL lipase gene, designated BnLIP2, was isolated from Brassica napus L. BnLIP2 was 1,300 bp long, with 1,122 bp open reading frame (ORF) encoding 373 amino acid residues. Sequence analysis indicated that BnLIP2 belonged to GDSL family. Southern blot analysis indicated that BnLIP2 belonged to a small gene family in rapeseed genome. RT-PCR analysis revealed that BnLIP2 was a tissue-specific expressing gene during reproductive growth and strongly expressed during seed germination. BnLIP2 expression could not be detected until three days after germination, and it subsequently became stronger. The transcript of this gene was deficient in root of seedlings growing at different stages. When juvenile seedlings were treated by methyl jasmonate (MeJ), salicylic acid (SA) and naphthalene acetic acid (NAA), BnLIP2 expression could not be induced in root. Our study implicates that BnLIP2 probably plays an important role in rapeseed germination, morphogenesis, flowering, but independent of root growth and development.

사과 '후지'의 잎 절편체로부터 신초 기관형성을 통한 식물체 재생에 적합한 배지조성 (Optimal Medium Compositions for Plant Regeneration via Adventitious Shoot Formation Using 'Fuji' Apple Leaf Explants)

  • 이윤경;권영주;형남인
    • Journal of Plant Biotechnology
    • /
    • 제46권4호
    • /
    • pp.310-317
    • /
    • 2019
  • 사과 '후지'의 잎 절편체로부터 신초 기관형성을 통한 효율적인 식물체 재생 시스템을 확립하기 위하여 배지조성 중 식물생장조절제, 기본배지와 당의 종류 및 농도를 달리하여 실험을 실시하였다. 식물생장조절제 NAA가 첨가된 상태에서 기본배지 중 N6와 LS, cytokinin 중 BA와 TDZ를 비교하였을 때, N6 배지에 BA 5.0 mg/L를 사용하는 것이 신초 형성율과 절편체당 재생 신초수에서 효과적이었다. BA보다 신초 형성에 효과적인 것으로 알려진 TDZ는 본 실험에서는 전반적으로 신초 형성율이 낮았다. 탄소 공급원과 식물생장조절제의 조합 처리에서는 sorbitol 40 g/L의 처리가 신초 형성율 67.3%, 절편체당 신초수 4.3개로 가장 좋았고, 식물생장조절제는 BA 5.0 mg/L와 NAA 0.1 mg/L의 혼합처리가 가장 효과적이었다. 암조건에서 3주간 배양한 후 명조건으로 옮겨 총 8주간 배양하여 재생된 신초는 1/4MS에 IBA 0.2 mg/L가 첨가된 배지에서 발근을 유도한 후 활착시켜 온실에서 재배하였을 때 정상적인 표현형을 보여주었다.

참깨 뿌리배양에 의한 hydroxymethylfurfrual 생산 (Production of Hydroxymethylfurfrual by Sesamum indicum L. Root Cultures)

  • 천재안;이진우;이영병;홍성식;조강진;정정한
    • 생명과학회지
    • /
    • 제19권12호
    • /
    • pp.1836-1840
    • /
    • 2009
  • 참깨의 뿌리를 바이오촉매로 이용한 뿌리 배양을 통하여 HMF를 생산하기 위하여 뿌리의 생장과 HMF의 합성에 적합한 뿌리배양 조건을 탐색하였으며, 이를 위하여 NAA(naphthalene acetic acid), silver nitrate의 적정 농도조건 및 적정 배양온도 조건에 대한 실험이 수행되었다. 뿌리의 생장이 가장 높은 처리구는 $30^{\circ}C$에서 NAA의 농도가 1.0 mg/l로 첨가된 처리구에서 측정되었으며, 평균적으로 볼 때 두 배양 온도($25^{\circ}C$$30^{\circ}C$)간에는 뿌리의 생장차이는 측정되지 않았다. NAA가 첨가되지 않은 처리에서는 두 배양온도 모두에서 참깨의 뿌리생장이 전혀 생기지 않은 반면에, NAA가 첨가된 배양에서는 두 배양온도에서 뿌리의 생장이 확인되었다. 그리고 0.5 mg/l의 질산은이 첨가된 처리구에서 참깨의 뿌리생장이 가장 높게 측정되었으며, $25^{\circ}C$에서 배양된 처리구 보다는 $30^{\circ}C$에서 배양된 뿌리의 생장이 약간 높게 나타났고, 질산은의 농도가 0.5 mg/l 이상의 높은 농도에서는 뿌리의 생장이 오히려 감소되는 경향이 있었다. 그리고 HMF의 합성의 경우 가장 높게 측정된 처리구는 배양온도 $25^{\circ}C$에서 NAA 0.5 mg/l이 첨가된 처리구에서 측정된 반면에 NAA 무처리구에서는 HMF 합성이 측정되지 않았다. 질산은이 첨가된 처리구에서는 HMF의 합성이 오히려 억제되는 경향을 보여준 반면에 질산은의 무처리구에서 HMF의 합성이 가장 높은 결과가 나타났다. 질산은의 농도가 0.5, 1.0 및 1,5 mg/l로 처리된 구에서는 질산은 무처리구에 비해서 약 8-10% 정도의 HMF 합성이 감소되는 경향이 나타났으며, 두 배양 온도($25^{\circ}C$$30^{\circ}C$ 배양) 간에도 HMF의 합성에는 차이가 보이지 않았다.