• Title/Summary/Keyword: Naphthalene Sublimation Method

Search Result 45, Processing Time 0.023 seconds

Heat/Mass Transfer Characteristics on Shroud with Turbine Blade Tip Clearances (터빈 블레이드 말단과 슈라우드 사이의 간극변화에 따른 슈라우드에서의 열/물질전달 특성)

  • Lee, Dong-Ho;Choe, Jong-Hyeon;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.414-421
    • /
    • 2001
  • The present study is conducted to investigate the local heat/mass transfer characteristics on the shroud with blade tip clearances. The relative motion between blade and shroud has little influence on the overall heat transfer characteristics, except some local effects. Therefore, the relative motion between the blade and shroud is neglected in this study. A naphthalene sublimation method is employed to determine the detailed local heat/mass transfer coefficients on the surface of the shroud. The tip clearance is changed from 0.66% to 2.85% of the blade chord length. The flow enters the gap between the blade tip and shroud at the pressure side due to the pressure difference. Therefore, the heat/mass transfer characteristics on the shroud are changed significantly from those with endwall. At first, high heat/mass transfer occurs along the profile of blade at the pressure side due to the entrance effect and acceleration of the gap flow. Then, the heat/mass transfer coefficients on the shroud increase along the suction side of the blade because tip leakage vortices are generated and interact with the main flow. The results show that the heat/mass transfer characteristics are changed largely with the gap distance between the tip of turbine blade and the shroud.

Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface (자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구)

  • Seo, Hyeong-Joon;Kuk, Keon;Lee, Joon-Sik;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

Local Convective Mass Transfer and Flow Structure Around a Circular Cylinder with Annular Fins (환상핀이 부착된 원봉 주위의 3차원 박리 유동구조 및 물질전달 특성 해석)

  • 박태선;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2132-2146
    • /
    • 1991
  • Extensive experiments were carried out to investigate the mass transfer and flow structures around a circular cylinder with annular fins in crossflow. The naphthalene sublimation method was employed to measure the circumferential and longitudinal variations of mass transfer from the circular cylinder between annular fins and H is the height of the fin from the cylinder surface. A remarkable enhancement of mass transfer due to the horseshoe vortices was observed near the corner junction between the annular fin and circular cylinder. The present results indicate that the local circumferential Sherwood number shows the higher values on the front stagnation point. The maximum augmentation of mass transfer rate at the center of cylinder is found near L/H-0.15 due to the separation bubble along the annular fins. The secondary flows, which are the corner vortices V2 and V3 near the end wall of the annular fin, are fairly predicted from the distributions of local Sherwood number in the spanwise direction. The average Sherwood number of overall surface at L/H=0.15 is larger 2.0 times than that of without annualr fins. The correlations of total average mass transfer rate with L/H and Re$_{L}$ can also be obtained.d.

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole (변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성)

  • Rhee, Dong Ho;Kim, Byunggi;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.140-150
    • /
    • 2004
  • In this study, the effect of relative position of the blade for the fixed vane has been investigated on blade surface heat transfer. The experiments were conducted in a low speed stationary annular cascade, and heat transfer of blade was examined for six positions within a pitch. Turbine test section has one stage composed of sixteen guide vanes and blades. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is about $2.5\%$ of the blade chord. For the detailed mass transfer measurements on the blade surfaces, a naphthalene sublimation technique was used. The inlet flow Reynolds number is fixed to $1.5{\times}10^5$. Complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as separation bubble, relaminarization, transition to turbulence and leakage vortices. The distributions of velocity and turbulence intensity change significantly with the relative position due to the blockage effect of the blade. This causes the variation of heat transfer patterns on the blade surface. The results show that the flow near the leading edge get highly disturbed and deflected toward the either side of the blade when the blade leading edge is positioned close to the trailing edge of the vane. Therefore, separation bubble disappears on the pressure side and overall heat transfer on the relaminarization region is increased. But, due to reduced tip gap flow at the upstream region, the effect of leakage flow on the upstream region of the blade surface is weakened. Thus, the heat transfer characteristics significantly change with the blade positions.

  • PDF

Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (II) - Tip and Shroud - (환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (II) - 끝단 필 슈라우드 -)

  • Lee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.495-503
    • /
    • 2005
  • Experiments were conducted in a low speed stationary annular cascade to investigate local heat transfer characteristics on the tip and shroud and the effect of inlet Reynolds number on the tip and shroud heat transfer. Detailed mass transfer coefficients on the blade tip and the shroud were obtained using a naphthalene sublimation technique. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$of the blade chord. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ to investigate the effect of Reynolds number. Flow reattachment after the recirculation near the pressure side edge dominates the heat transfer on the tip surface. Shroud surface has very intricate heat/mass transfer distributions due to complex flow patterns such as acceleration, relaminarization, transition to turbulent flow and tip leakage vortex. Heat/mass transfer coefficient on the blade tip is about 1.7 times as high as that on the shroud or blade surface. Overall averaged heat/mass transfer coefficients on the tip and shroud are proportional to $Re_{c}^{0.65}\;and\;Re_{c}^{0.71},$ respectively.

Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (I) - Near-tip Blade Surface - (환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (I) - 블레이드 끝단 인접 표면 -)

  • Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.485-494
    • /
    • 2005
  • For the extensive investigation of local heat/mass transfer on the near-tip surface of turbine blade, experiments were conducted in a low speed stationary annular cascade. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$ of the blade chord. Detailed mass transfer coefficient on the blade near-tip surface was obtained using a naphthalene sublimation technique. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ Extremely complex heat transfer characteristics are observed on the blade surface due, to complicated flow patterns, such as flow acceleration, laminarization, transition, separation bubble and tip leakage flow. Especially, the suction side surface of the blade has higher heat/mass transfer coefficients and more complex distribution than the pressure side surface, which is related to the leakage flow. For all the tested Reynolds numbers, the heat/mass transfer characteristics on the turbine blade are the similar. The overall averaged $Sh_{c}$ values are proportional to $Re_{c}^{0.5}$ on the stagnation region and the laminar flow region such as the pressure side surface. However, since the flow is fully turbulent in the near-tip region, the heat/mass transfer coefficients are proportional to $Re_{c}^{0.8}.$

A Study on Thermal-hydraulic Characteristics for Nuclear Fuel Rod Bundle (핵연료 집합체에서의 열유동 특성에 관한 연구)

  • Yoo, S.Y.;Chung, M.H.;Kim, M.W.;Choi, YJ.;Kim, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.3-8
    • /
    • 2001
  • For the successful design of nuclear reactor, it is very important to investigate thermal-hydraulic characteristics of fuel rod bundle. Fluid flow and heat transfer in the non-circular cross-section of nuclear fuel rod bundle are different from those found in common circular tube. And complex three dimensional flow including secondary and vortex flow, is formed around the bundles. The purpose of this research is to examine how geometries and flow conditions affect heat transfer in fuel rod bundle. Design data for nuclear fuel rod bundle and structure are surveyed, and $3{\times}3$ sub-channel model is adopted in this study. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions.

  • PDF

Experimental Study of Mass Transfer on a Film Cooled Cirular Cylinder Surface (막냉각되는 원봉 표면에의 물질전달에 관한 실험적 연구)

  • 이준식;이택식;이상우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1756-1762
    • /
    • 1991
  • 본 연구에서는 막냉각되는 터빈블레이드에서의 열전달 계수를 측정하기 위하 여 열전달과 물질전달의 상사관계를 이용하였다.터빈블레이드의 선단을 다른 연구 에서와 마찬가지로 원봉으로 모사하였고, 원봉의 표면에 위치하고 있는 1열의 분사홀 로부터 제트가 분사될 때 분사홀 근처 및 그 하류에서의 물질 전달계수를 측정하기 위 해 나프탈렌승화법을 이용하였다. 분사홀 열의 위치를 정체점에서 하류방향으로 이 동시키면서, 물질전달계수의 변화를 연구하였고, 분사율(M=.rho.$_{j}$ U$_{j}$ /.rho.$_{\infty}$ U$_{\infty}$)의 영향도 고찰하였다.