• Title/Summary/Keyword: Naphtha

Search Result 74, Processing Time 0.024 seconds

Study of Hydrotreating and Hydrocracking Catalysts for Conversion of Waste Plastic Pyrolysis Oil to Naphtha (폐플라스틱 열분해유의 납사 전환을 위한 수첨처리 및 수첨분해 촉매연구)

  • Ki-Duk Kim;Eun Hee Kwon;Kwang Ho Kim;Suk Hyun Lim;Hai Hung Pham;Kang Seok Go;Sang Goo Jeon;Nam Sun Nho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • In response to environmental demands, pyrolysis is one of the practical methods for obtaining reusable oils from waste plastics. However, the waste plastic pyrolysis oils (WPPO) are consumed as low-grade fuel oil due to their impurities. Thus, this study focused on the upgrading method to obtain naphtha catalytic cracking feedstocks from WPPO by the hydroprocessing, including hydrotreating and hydrocracking reaction. Especially, various transition metal sulfides supported catalysts were investigated as hydrotreating and hydrocracking catalysts. The catalytic performance was evaluated with a 250 ml-batch reactor at 370~400 ℃ and 6.0 MPa H2. Sulfur-, nitrogen-, and chlorine-compounds in WPPO were well eliminated with nickel-molybdenum/alumina catalysts. The NiMo/ZSM-5 catalyst has the highest naphtha yield.

합성고무 수급의 전망

  • Korea Tire Manufacturers Association
    • The tire
    • /
    • s.85
    • /
    • pp.26-33
    • /
    • 1979
  • 합성고무의 주원료인 Butadiene-Naphtha-원유에 대해서는 1973년의 석유위기 이후, 작년말 이란 혁명을 계기로 재차 어려운 국면을 맞이하게 되었다. 그 동안 OPEC의 원유가격의 대폭인상 결정, 동경 Summit에서의 선진국들의 석유 수입제한목표의 설정 등 세계경제의 동향에 큰 영향을 미치는 결정 등이 계속 나와 석유 및 석유화학제품의 수급구조도 크게 변화될 것으로 보인다. 그 과정에 있어서, 고무원료의 장기수급 동향을 정확히 확정하기에는 매우 어려운 일이나 합성고무와 천연고무의 현상태를 분석하여 앞으로의 전망에 대해서 각종자료를 바탕으로 검토해보고자 한다. <편집자주>

  • PDF

A fault diagnostic system for a chemical process using artificial neural network (인공 신경 회로망을 이용한 화학공정의 이상진단 시스템)

  • 최병민;윤여홍;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.131-134
    • /
    • 1990
  • A back-propagation neural network based system for a fault diagnosis of a chemical process is developed. Training data are acquired from FCD(Fault-Consequence Digraph) model. To improve the resolution of a diagnosis, the system is decomposed into 6 subsystems and the training data are composed of 0, 1 and intermediate values. The feasibility of this approach is tested through case studies in a real plant, a naphtha furnace, which has been used to develop a knowledge based expert system, OASYS (Operation Aiding expert SYStem).

  • PDF

A study on Selection Method of Safety Devices According to Process Trouble (공정 트러블에 따른 안전장치 선택방법에 관한 연구)

  • Ko, Jae-Wook;Jung, In-Hee;Jung, Sang-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.52-60
    • /
    • 2009
  • This study reflects the concept of risk-based design to present a systematic design means and a method to adjust regulations and standards towards a more reliable direction within the current law. In order to enhance the early design concentration and level in the part of safety design, a new Advanced Safety Analysis Table (ASAT) was developed to provide information on the systematized safety design element from the early design phase. Furthermore, a guideline was put forth about the selection of a safety device according to process trouble, on the basis of the ASAT. To apply the proposed ASAT and the selection method of a safety device according to process troubles, the ASAT was executed for the PGC (Process Gas Compressor) of the NCC (Naphtha Cracking Center), and the result of selecting the safety device was analyzed according to process trouble.

  • PDF

The Consequence Analysis for Fire Accidents by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant (나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 화재사고의 영향평가)

  • 윤대건;이헌창;함병호;조지훈;김태옥
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.3-15
    • /
    • 1998
  • The consequence analysis for jet and flash fire accidents by the continuous release of butane vapor was performed and effects of process variables on consequences were analyzed in standard conditions. For the continuous release (87.8 kg/s) of butane vapor at 8m elevated height in the debutanizing process of the naphtha cracking plant operating at 877 kPa, 346.75 K, we found that for the jet fire accident, shape and size of the flame could be predicted and thermal radiation estimated by API model at 200m distance from release point was 1.5kW/$m^2$, and that for the flash fire accident, effect range was 11.2~120.2m. Also, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, effects of operating pressures on XUFL were smaller(about 1/10) than those on XLFL for the flash fire accident.

  • PDF

Preparatoin of Precursor Pitch for Carbon Applications from Naphtha Cracking Residues (납사분해공정 잔사유로부터 탄소재료용 전구체 핏치의 제조)

  • Kim, Myung-Soe;Kim, Sang-Yeol;Hwang, Jong-Sic
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.77-87
    • /
    • 1997
  • PFO(pyrolized fuel oil) and $C_{10}^{+}$ oil, which are the residual heavy oils form a NCC(naphtha cracking center), were heat-treated to produce the precursor-pitch for carbon materials. After PFO was initially distilled near $300^{\circ}C$ to separate the volatile matters recovering as high-quality fuel oil, the residuum of nonvolatile precursor-pitch was then thermally pyrolized in the temperature ranges from $350^{\circ}C$ to $450^{\circ}C$. Spinnable isotropic pitch with the softening point of $200^{\circ}C$ and the toluene insolubles of 36wt% was obtained at $365^{\circ}C$, and then was successfully spun through a spinneret(0.5mm diameter). After spinning, an isotropic carbon fiber of $25{\mu}m$ diameter was obtained via oxidation and craboniation procedures. Mesophase spherules began to be observed from the product pitch pyrolized at $400^{\circ}C$, and bulk mesophase with a flow texture was observed above $420^{\circ}C$. In the case of $C_{10}^{+}$ was the feed was polymerized in the presence $H_2SO_4$ at room temperature to increase the molecular weight and then heat-treated gradually up to $200{\sim}250^{\circ}C$. The products obtained with the softening point of $80{\sim}190^{\circ}C$ were carbonized at 500 and $1000^{\circ}C$ to examine the morphology.

Hydrogen Production from Pyrolysis Oil of Waste Plastic on 46-3Q Catalyst (46-3Q 촉매 상에서 폐플라스틱의 열분해 오일로부터 수소 제조 )

  • SEUNGCHEOL SHIN;HANEUL JUNG;DANBEE HAN;YOUNGSOON BAEK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.601-607
    • /
    • 2023
  • Pyrolysis oil (C5-C20) produced using plastic non-oxidative pyrolysis technology produces naphtha oil (C5-C10) through a separation process, and naphtha oil produces hydrogen through a reforming reaction to secure economic efficiency and social and environmental benefits. In this study, waste plastic pyrolysis oil was subjected to a steam reforming reaction on a commercialized catalyst of 46-3Q And it was found that the 46-3Q catalyst reformed the pyrolysis oil to produce hydrogen. Therefore, an experiment was performed to increase hydrogen yield and minimize the byproduct of ethylene. The reaction experiment was performed using actual waste plastic oil (C8-C11) with temperature, steam/carbon ratio (S/C) ratio, and space velocity as variables. We studied reaction conditions that can maximize hydrogen yield and minimize ethylene byproducts.

The molecular structure of (+) -6-methoxy-.alpha. 1-2-naphtha-leneacetic acid determined by X-Ray method

  • Kim, Yang-Bae;Song, Hyun-June
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.137-139
    • /
    • 1984
  • The molecular structure of (+)-6-Me hoxy-.alpha.-methyl-2-naphthaleneacetic acid (Naproxen), $C_{14}H_{14}O_{ 3}$, was determined by X-Ray diffraction technique. Naproxen crystallized in $P2_1$ with two molecules on the unit cell of dimensions a = 7.855, b = 5.783, c = 13.347$\AA$ and $\beta$ = $93.9^{\circ}$

  • PDF

II. 윤활기유 공정 및 제품소개

  • 이두원
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1986.06a
    • /
    • pp.10-20
    • /
    • 1986
  • I. 윤활기유 제조시설소개 개요 1) 고급 윤활기유(HVI)생산공장으로서 그간 수입에만 의존하던 최고급 품질의 기유를 국내 수요업체에 안정공급 2) 세계 최신 공정인 Gulf Lube Oil Hydrotreating Process Type III (수소첨가 개질공정)채택 3) 국내 최초일뿐 아니라, 세계에서도 일본, 카낟에 이어 3번째로 건설 1. 고품질 제품 생산-고점도 지수, 산화안정성 및 열안정성 우수, 잔류탄소분, 윤황분, 질소분 극소, 방향족 성분 및 회분 극소, 색상 양호 2. 첨가제(특히 산화방지제 및 점도 지수 향상제)사용효과 상승으로 완제품 생산시 생산비 감소 3. 동일 VI 제품 생산기준 수율이 높음 - Hydrocarbon Structure 변화로 원료 유중 부적합성분의 윤활기유화 4. Severity 조절로 Production Mode 변경 용이 5. 양질의 부산물 생산 - HDT Naphtha, Middle distillate 6. 용제 추출기유는 원유종류 및 성상에 따라 제품특성이 결정되나, 사용가능 원유가 다양 하면서도 제품특성 및 품질이 일정함.

  • PDF

Effects of Inhibition on Formation and Growth of Polymer in Butadiene Extraction Unit (Butadiene Extraction Unit 내의 Polymer 생성 억제 효과)

  • Im, Gyeong
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.63-73
    • /
    • 1992
  • There are many methods of obtaining butadiene described in the literature. In the america it is produced largely from petroleum gases, i.e., by catalytic dehydrogenation of butene of butene-butane mixtures. Butadiene can be recovered from the $C_4$ residue of an olefin plant by distilling off a fraction containing most of the butadiene, catalytically hydrogenating the higher acetylenes to olefins and separating the product from other olefins and isobutane by extraction. Also it can be obtained by cracking naphtha and light oil. Among the individual dienes of commercial importance, 1, 3-butadiene is of first importance. It is used primarily for the production of polymers.In the present paper, it was investigated for a effect of the formation and the growth inhibition of popped corn polymer in butadiene extraction unit. As a result of study, inhibitors, $NaNO_2$ and TBC were good effective for inhibition of the formation and growth in popcorn polymer. The rational formula of popcorn polymer obtained was $(C_4H_6)_x$.

  • PDF