• Title/Summary/Keyword: Nanowire arrays

Search Result 73, Processing Time 0.119 seconds

Development of Nanowire Patterning Process Using Microcontact Printing (마이크로컨택 프린팅을 이용한 나노와이어 패터닝 기술 개발)

  • Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.571-575
    • /
    • 2016
  • Recently, there has been much focus on the controlled alignment and patterning process of nanowires for nanoelectronic devices. A simple and effective method for patterning of highly aligned nanowires using a microcontact printing technique is demonstrated. In this method, nanowires are first directionally aligned by contact printing, following which line and space micropatterns of nanowire arrays are accomplished by microcontact printing with a micro patterned NOA mold.

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

Fabrication of Single Crystal Poly (3,4-ethylenedioxythiophene) Nanowire Arrays by Vapor Phase Polymerization with Liquid-bridge-mediated Nanotransfer Molding

  • Lee, Gi-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.372-372
    • /
    • 2012
  • We have studied a fabrication of Poly (3,4-ethylenedioxythiophene) (PEDOT) wire arrays and structures with various feature sizes from hundreds micrometers to tens nanometers. PEDOT is well-known as a conducting material, can be grown by a vapor pressure polymerization (VPP) method. The VPP technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Fabrication of Organic Nanowire Electronics by Direct Printing Method

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.563-563
    • /
    • 2012
  • We report a one-step fabrication of single-crystal organic nanowire arrays on substrates using a new direct printing method (liquid-bridge-mediated nanotransfer moulding, LB-nTM), which can simultaneously enable the synthesis, alignment and patterning of the nanowires using molecular ink solutions. Two- or three-dimensional complex structures of various single-crystal organic nanowires were directly fabricated over a large area with a successive process. The position of the nanowires can be aligned easily on complex structures because the mold is movable on substrates before drying the polar liquid layer, which acts as an adhesive lubricant. This efficient manufacturing method can produce a wide range of optoelectronic devices and integrated circuits with single-crystal organic nanowires.

  • PDF

High-quality ZnO nanowire arrays directly synthesized from Zn vapor deposition without catalyst

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Choi, Bong-Geun;Kim, Hyoun-Woo;So, Dae-Sup;Lee, Joon-Woo;Park, No-Hyung;Huh, Hoon;Tung, Ngo Trinh;Ham, Heon;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.137-146
    • /
    • 2011
  • Vertically well-aligned ZnO nanowire (NW) arrays were synthesized directly on GaN/sapphire and Si substrate from Zn vapor deposition without catalysts. Experimental results showed that the number density, diameter, crystallinity and degree of the alignment of ZnO NWs depended strongly on both the substrate position and kind of the substrates used for the growth. The photoluminescence (PL) characteristics of the grown ZnO NW arrays exhibit a strong and sharp ultraviolet (UV) emission at 379 nm and a broad weak emission in the visible range, indicating that the obtained ZnO NWs have a high crystal quality with excellent optical properties. The as-grown ZnO NWs were characterized by using scanning electron microscopy (SEM), high resolution transmission electronic microscopy (HR-TEM), and X-ray diffraction (XRD).

Single-Crystal Poly(3,4-ethylenedioxythiopene) Nanowires as Electrodes for Field-Effect Transistors

  • Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.637-637
    • /
    • 2013
  • We develop single-crystal poly(3,4-ethylenedioxythiopene nanowires using liquid-bridge-mediated nanotransfer printing via vapor phase polymerization. This direct printing method can simultaneously enable the synthesis, alignment and patterning of the nanowires from molecular ink solutions. Twoor three-dimensional complex structures of various single-crystal organic nanowires were directly fabricated over a large area using many types of molecular inks. This method is capable of generating several optoelectronic devices. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. To demonstrate its usefulness, we used LB-nTM to fabricate nanowire field-effect transistors and arrays of 6,13-bis (triisopropyl- silylethynyl) pentacene (TIPS-PEN) nanowire field-effect transistors.

  • PDF