• 제목/요약/키워드: Nanowire ISFET

검색결과 4건 처리시간 0.018초

Top-down 방식으로 제작한 실리콘 나노와이어 ISFET 의 전기적 특성 (A Study on the Electrical Characterization of Top-down Fabricated Si Nanowire ISFET)

  • 김성만;조영학;이준형;노지형;이대성
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.128-133
    • /
    • 2013
  • Si Nanowire (Si-NW) arrays were fabricated by top-down method. A relatively simple method is suggested to fabricate suspended silicon nanowire arrays. This method allows for the production of suspended silicon nanowire arrays using anisotropic wet etching and conventional MEMS method of SOI (Silicon-On-Insulator) wafer. The dimensions of the fabricated nanowire arrays with the proposed method were evaluated and their effects on the Field Effect Transistor (FET) characteristics were discussed. Current-voltage (I-V) characteristics of the device with nanowire arrays were measured using a probe station and a semiconductor analyzer. The electrical properties of the device were characterized through leakage current, dielectric property, and threshold voltage. The results implied that the electrical characteristics of the fabricated device show the potential of being ion-selective field effect transistors (ISFETs) sensors.

전계효과트랜지스터의 생명공학 응용 (Field Effect Transistors for Biomedical Application)

  • 손영수
    • 공업화학
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2013
  • 의료의 패러다임이 질병 치료에서 질변 예방 및 조기 진단으로 변화하면서 미량의 생분자를 측정할 수 있는 기술에 대한 수요가 증가하고 있다. 미량의 생분자를 측정할 수 있는 다양한 기술이 존재하는데 여기서는 성숙된 반도체 기술을 이용한 바이오센서에 대해 언급하고자 한다. 이의 이해를 돕기 위해 반도체의 기본 소자인 MOSFET (Metal-oxide-semiconductor field-effect transistor)의 구조와 원리를 소개하고, 이를 응용한 ISFET (Ion sensitive FET), BioFET (Biologically modified FET), Nanowire FET, 그리고 IFET (Ionic FET)에 대한 소개와 이의 생명공학에 대한 응용에 대해 논하고자 한다.

Applications of Field-Effect Transistor (FET)-Type Biosensors

  • Park, Jeho;Nguyen, Hoang Hiep;Woubit, Abdela;Kim, Moonil
    • Applied Science and Convergence Technology
    • /
    • 제23권2호
    • /
    • pp.61-71
    • /
    • 2014
  • A field-effect transistor (FET) is one of the most commonly used semiconductor devices. Recently, increasing interest has been given to FET-based biosensors owing totheir outstanding benefits, which are likely to include a greater signal-to-noise ratio (SNR), fast measurement capabilities, and compact or portable instrumentation. Thus far, a number of FET-based biosensors have been developed to study biomolecular interactions, which are the key drivers of biological responses in in vitro or in vivo systems. In this review, the detection principles and characteristics of FET devices are described. In addition, biological applications of FET-type biosensors and the Debye length limitation are discussed.