• Title/Summary/Keyword: Nanowire ISFET

Search Result 4, Processing Time 0.018 seconds

A Study on the Electrical Characterization of Top-down Fabricated Si Nanowire ISFET (Top-down 방식으로 제작한 실리콘 나노와이어 ISFET 의 전기적 특성)

  • Kim, Sungman;Cho, Younghak;Lee, Junhyung;Rho, Jihyoung;Lee, Daesung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.128-133
    • /
    • 2013
  • Si Nanowire (Si-NW) arrays were fabricated by top-down method. A relatively simple method is suggested to fabricate suspended silicon nanowire arrays. This method allows for the production of suspended silicon nanowire arrays using anisotropic wet etching and conventional MEMS method of SOI (Silicon-On-Insulator) wafer. The dimensions of the fabricated nanowire arrays with the proposed method were evaluated and their effects on the Field Effect Transistor (FET) characteristics were discussed. Current-voltage (I-V) characteristics of the device with nanowire arrays were measured using a probe station and a semiconductor analyzer. The electrical properties of the device were characterized through leakage current, dielectric property, and threshold voltage. The results implied that the electrical characteristics of the fabricated device show the potential of being ion-selective field effect transistors (ISFETs) sensors.

Field Effect Transistors for Biomedical Application (전계효과트랜지스터의 생명공학 응용)

  • Sohn, Young-Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • As the medical paradigm is changing from disease treatment to disease prevention and an early diagonosis, the demand to develop techniques for the detection of minute concentrations of biomolecules is increasing. Among the various techniques to sense the minute concentration of biomolecules, the biosensors utilizing the matured semiconductor techniques are presented here. To understand such biosensors, the structure and working principle of a MOSFET (Metal-oxide-semiconductor field-effect transistor) which is the basic semiconductor device is firstly introduced, and then the ISFET (Ion sensitive FET), BioFET (Biologically modified FET), Nanowire FET, and IFET (Ionic FET) are introduced, and their applications to biomedical fields are discussed.

Applications of Field-Effect Transistor (FET)-Type Biosensors

  • Park, Jeho;Nguyen, Hoang Hiep;Woubit, Abdela;Kim, Moonil
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.61-71
    • /
    • 2014
  • A field-effect transistor (FET) is one of the most commonly used semiconductor devices. Recently, increasing interest has been given to FET-based biosensors owing totheir outstanding benefits, which are likely to include a greater signal-to-noise ratio (SNR), fast measurement capabilities, and compact or portable instrumentation. Thus far, a number of FET-based biosensors have been developed to study biomolecular interactions, which are the key drivers of biological responses in in vitro or in vivo systems. In this review, the detection principles and characteristics of FET devices are described. In addition, biological applications of FET-type biosensors and the Debye length limitation are discussed.