• Title/Summary/Keyword: Nanostructured surface

Search Result 182, Processing Time 0.031 seconds

Molecular Imprints in Nanostructured Polymer Surfaces - A New Generation of Biomimetic Materials for Chemical Sensors

  • Haupt, Karsten
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.31-32
    • /
    • 2006
  • We describe the preparation of nanostructured molecularly-imprinted surfaces using nanomolding on porous alumina. In molecular imprinting functional and cross-linking monomers are copolymerized in the presence of a molecular template, resulting in synthetic receptor materials. The drug propranolol and the dye fluorescein were used as the molecular imprinting templates. Binding studies with imprinted and non-imprinted surfaces revealed specific recognition of the templates and thus the existence of selective binding sites. In addition, the surface properties of the films were studied by water contact angle measurements. It was found that, depending on the monomers used, certain nanostructures induced great changes in the wetting properties of the surface.

  • PDF

Electrical and Optical Properties of Ti-ZnO Films Grown on Glass Substrate by Atomic Layer Deposition (원자층 증착법을 통하여 유리 기판에 증착한 Ti-ZnO 박막의 전기적 광학적 특성)

  • Lee, U-Jae;Kim, Tae-Hyeon;Gwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.57-57
    • /
    • 2018
  • Zinc-oxide (ZnO), II-VI semiconductor with a wide and direct band gap (Eg: 3.2~3.4 eV), is one of the most potential candidates to substitute for ITO due to its excellent chemical, thermal stability, specific electrical and optoelectronic property. However, the electrical resistivity of un-doped ZnO is not low enough for the practical applications. Therefore, a number of doped ZnO films have been extensively studied for improving the electrical conductivities. In this study, Ti-doped ZnO films were successfully prepared by atomic layer deposition (ALD) techniques. ALD technique was adopted to careful control of Ti doping concentration in ZnO films and to show its feasible application for 3D nanostructured TCO layers. Here, the structural, optical and electrical properties of the Ti-doped ZnO depending on the Ti doping concentration were systematically presented. Also, we presented 3D nanostructured Ti-doped ZnO layer by combining ALD and nanotemplate processes.

  • PDF

Superhard Mo-Al-N films Composed of Grains with Different Crystallographic Orientations and/or Lattice Structures

  • Musil, J.;Stadnik, T.;Cernansky, M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.22-26
    • /
    • 2003
  • This short communication reports on the experiment which demonstrates that superhard nanostructured films with hardness of about 40 GPa and greater can be composed not only of two or more nanocrystalline and/or amorphous phases of different materials, as it is in the case of nanocomposite coatings, but also that can be formed by a mixture of small (<10 nm) nanocrystalline grains of the same material with different crystallographic orientation and/or lattice structures. This finding opens new possibilities to develop advanced nanostructured materials with enhanced physical and functional properties.

Cellular Adhesion and Growth on the Vertically Aligned Silicon Nanowire Arrays

  • Yun, Seo-Yeong;Park, Lee-Seul;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.266.2-266.2
    • /
    • 2013
  • According to advanced nanotechnology, the nanostructured materials with various kinds and shape are synthesized easily or produced by process. Recently, researches about interaction between the nanostructured materials and biological system have been progressed actively. The surface topography may influence cellular responses, for example cell adhesion, cell morphology. In this work, we synthesized vertically aligned silicon nanowires (SiNWs) on the Au-covered Si(111) wafer by chemical vapor deposition (CVD) method. We accomplished to control of the SiNWs diameter by regulating thickness of Au film such as 1 nm and 10 nm. These substrates did not isolate cells and just provided surface topography for cell culture. Human Embryonic Kidney 293T cells (HEK 293T cells) were cultured on these substrates for 2 days. We studied the nanotopographical effects on cell morphology, adhesion, and growth which are evaluated on each SiNWs substrate comparing bare glass as control.

  • PDF

Morphology Observation of Nanostructured Ti-25Ta-xZr Alloys

  • Kim, Hyun-ju;Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.331-331
    • /
    • 2012
  • In this study, we investigated morphology observation of nanostructured Ti-25Ta-xZr alloys. Ti-25Ta-(3wt%~15 wt%) Zr alloys were prepared by a vacuum arc-melting furnace. Formation of nanotubular structure was achieved by an electrochemical method in 1M $H_3PO_4$ electrolytes containing 0.8%wt.% NaF. Nanotube morphology depended on alloying elements.

  • PDF

Biomimetic Apatite Precipitated on the Surface of Titanium Powder (티타늄분말의 표면에 석출된 생체모방 아파타이트)

  • Kim, Jong-Hee;Sim, Young-Uk;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • Biomimetic whisker-like apatite was formed on thermally and NaOH-treated titanium powder in a simulated body fluid (SBF). In the early process of the SBF immersion, the surface structure of the titanium powder was loosened, possibly due to the dissolution of $Na^+$ ions on the surface of the titanium powder into SBF. When immersed for 7 days in SBF, fine precipitates appeared on the titanium surfaces; the coating layer (<200 nm in thickness) consisted of nanostructured, amorphous whisker-like and particulate phase, observed by TEM. With the extension of the immersion time to 16 days, the chrysanthemum flower type morphology of carbonated hydroxyapatite with a nanocrystallinity was developed on the surface of the titanium powder.

CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films (산화아연 나노구조 박막의 일산화탄소 가스 감지 특성)

  • Hung, Nguyen Le;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

Size-homogeneous gold nanoparticle decorated on graphene via MeV electron beam irradiation

  • Kim, Yoo-Seok;Song, Woo-Seok;Jeon, Cheol-Ho;Kim, Sung-Hwan;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.487-487
    • /
    • 2011
  • Recently graphene has emerged as a fascinating 2D system in condensed-matter physics as well as a new material for the development of nanotechnology. The unusual electronic band structure of graphene allows it to exhibit a strong ambipolar electric field effect with high mobility. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85 % transmittance in the visible range (400?900 nm), the CVD-grown graphene electrodes have a higher/flatter transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition, for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10 ~ 15 nm in mean size were decorated along the surface of the graphene after 1.5 MeV-e-beam irradiation. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF