• Title/Summary/Keyword: Nanoporous platinum

Search Result 8, Processing Time 0.039 seconds

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Regulation of Electrochemical Oxidation of Glucose by lonic Strength-Controlled Virtual Area of Nanoporous Platinum Electrode

  • Kim, Jong-Won;Park, Se-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.203-206
    • /
    • 2007
  • Electrochemical reaction of glucose was regulated by the electrochemically active area of nanoporous platinum, which is controlled by ionic strength. The profile of the oxidation current of glucose vs. ionic strength was identical with that of the electrochemically active area. This result confirms that the nanopores are virtually opened for the electrochemical reaction of glucose when the ionic strength climbs over a specific concentration and implies that the electrochemical reactions on nanoporous electrode surfaces can be controlled by concentration of electrolyte.

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin;Piao, Hushan;Son, Yongkeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

알루미나 나노 다공성 박막공정용 전기화학 양극산화 장치의 제작

  • Choe, Jae-Ho;Baek, Ha-Bong;Kim, Geun-Ju
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.230-233
    • /
    • 2007
  • A system of anodic process of aluminum thin film has implemented for nanofabrication. The manufactured equipment consists of three main parts: chiller, reaction bath and power supply. The chiller module consists of refrigeration compressor, copper tube and coolant with a thermostat. The reaction bath has kept in same temperature as a thermodynamic canonical ensemble system during the anodic reaction process. The magnetic bar has stirred oxalic acid in bath for uniform reaction. The DC power supply has applied into two electrodes, aluminum for anode and platinum for cathode in the oxalic acid. The anodization process results in the formation of nanoporous thin films.

  • PDF

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

Characterization of Nafion Coated Non-enzymatic Glucose Sensor in Human Plasma and Whole Blood (나피온을 이용하여 패키징된 무효소 혈당센서의 혈장 및 전혈에서의 특성 평가)

  • Lee, Yi-Jae;Kim, Jung-Doo;Park, Jae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1474-1475
    • /
    • 2008
  • 본 논문에서는 nanoporous Pt (Platinum) 전극을 이용한 무효소 혈당센서의 생체 적합성 및 전류응답 특성 향상을 위해 다양한 패키징 방법이 제안되었다. 생체적합성을 갖는 Nafion 멤브레인을 dipping, spin coating, chemical bonding 방법으로 패키징 한 후, 다양한 글루코오스 농도의 혈장, 전혈에서 특성을 분석, 비교하였다. 단백질 등이 포함되지 않은 환경에서 spin coating 방법으로 패키징한 센서의 전류응답 특성은 가장 좋았지만, 혈장 및 전혈에서는 dipping, chemical bonding 방법으로 패키징한 센서의 전류응답 특성에 미치지 못했다. Nafion film을 센서와 chemical bonding한 센서의 혈장에서 sensitivity 는 0.32 ${\mu}A/mM{\cdot}cm^2$ 이었다. 한편, 전혈에서 bare 센서가 급격한 bio-fouling 현상을 보이는 반면 패키징한 센서는 글루코오스 농도에 따라 일정한 전류변화를 보였다. 이는 Nafion을 이용하여 패키징한 무효소 혈당 센서가 생체환경에 적합할 뿐 아니라 생체이식형 및 연속 측정 가능한 시스템에 적용 가능함을 보여준다.

  • PDF

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film (Ni 박막 위 20 nm급 고정렬 Pt 크로스-바 구조물의 형성 방법)

  • Park, Tae Wan;Jung, Hyunsung;Cho, Young-Rae;Lee, Jung Woo;Park, Woon Ik
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.910-914
    • /
    • 2018
  • Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.