• Title/Summary/Keyword: Nanoparticle Collection

Search Result 11, Processing Time 0.033 seconds

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

Effect of Charging on Particle Collection during Synthesis of Nanoparticles by Pulse Plasma (펄스 플라즈마에 의한 나노입자 제조 시 하전이 입자의 포집에 미치는 영향)

  • Kim, Kwang-Su;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.210-214
    • /
    • 2007
  • Silicon nanoparticles are widely studied as a material with great potential for wide applications. For application to present industry, it should be easy to control the characteristics of nanoparticle including the size and structure. In this paper, we investigated the formation of Si nanoparticle using pulse plasma technology. Plasma technology is already quite common in device industry and the size of nanoparticle can be easily controlled according to plasma pulse duration. An inductively-coupled plasma chamber with RF power (13.56 MHz) was used with DC-biased grid $(-200\sim+200\;V)$ installed above the substrate. In order to measure the shape and size of nanoparticle, TEM was used. It was found that the size of nanoparticles can be controlled well with the plasma pulse duration and the collection efficiency is increased with the use of either negative or positive DC-bias.

  • PDF

A study on nanoparticle filtration characteristics of multilayer meltblown depth filters

  • Lee, Kang-San;Hasolli, Naim;Jeon, Seong-Min;Lee, Jae-Rang;Kim, Kwang-Deuk;Park, Young-Ok;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • Due to recent development in nanotechnology and increasing usage and production of nanomaterials, numerous studies related to environment, sanitation and safety handling of nanoparticle are being conducted. Since nanoparticles can be easily absorbed into human bodies through breathing process, based on their toxic substances and their large specific surface, these particles can cause serious health damage. Therefore, to reduce nanoparticle emissions, nanofiltration technology is becoming a serious issue. Filtration is a separation process during which a fluid passes through a barrier by removing the particles from the stream. Barrier filters can be made of various materials and shapes. One of the most common type of barrier filter is the fibrous filter. Fibrous filters are divided in two types: nonwoven and woven fabrics. Polypropylene is a thermoplastic material, used as a base material for melt blown nonwoven fabric. In this study, we examined filtration property of KCl nanoparticles with a mean particle diameter of 75 nm using multilayer meltblown filter samples. These experiments verify that the penetration of nanoparticle in the filter correlate with pressure drop; the meltblown layer MB1 has the greatest effect on dust collection efficiency of the filter. Among all tested samples, dust collection efficiency of 2-layer filter was best. However, when considering the overall pressure drop and dust collection efficiency, the 4-layer filter has the highest quality factor for particles smaller than 70 nm.

Classification of Nanoparticles by Inertial/Diffusion Filter (관성/확산필터를 이용한 나노입자의 분류기술 연구)

  • Kim, Yonggu;Lee, Sangyul;Kim, Hannah;Noh, Hakjae;Bong, Choonkeun;Kim, Daesung
    • Particle and aerosol research
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • The purpose of this research is to find out the collection property of nanoparticle in diffusion filter to know particle size dispersion of nanomaterial using inertial force and principle of Brownian diffusion motion. We used inertial filters which are two different type and diffusion filters made by various kinds of Wiremesh and the different pieces of filter to compare with particle size distribution using NaCl particles. Finally, We made a conclusion as follows : (1) the bigger available charging volume is and the larger specific surface area of inertial filter is, the better collection efficiency is. (2) The higher wire-mesh number of filter is, the more collection efficiency of small particle is increasing because the wire of the higher Wiremesh number filter is thinner and denser. (3) The more pieces of wire-mesh filter, the more collection efficiency is increasing because it makes the residence time longer.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

Characteristics of Charging and Collection of 10-nm-Class Ultrafine Nanoparticles in an Electrostatic Precipitator (전기집진기의 10 nm 급 초미세 나노입자의 하전 및 집진 특성)

  • Han, Bang-Woo;Kim, Hak-Joon;Kim, Yong-Jin;Song, Dong-Keun;Hong, Won-Seok;Shin, Wan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1013-1018
    • /
    • 2011
  • The charging of 10-nm-class nanoparticles in an electrostatic precipitator (ESP) according to particle charging ratio has been investigated and compared to the diffusion effect of the nanoparticles. The competition between the charging probability and the diffusion loss effect determines the collection efficiency of nanoparticles in the ESP. The collection efficiency of nanoparticles decreased continuously with decreasing particle diameter. This indicates that the partial charging effect of 10-nm-class nanoparticles is more dominant than their diffusion loss effect in the ESP for nanoparticles in the particle size range of less than 10 nm. The charging ratios based on unipolar diffusion charging calculations were in good agreement with the experimental collection efficiencies for nanoparticles less than 10 nm in diameter.

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices

  • Christwardana, Marcelinus;Chung, Yongjin;Tannia, Daniel Chris;Kwon, Yongchai
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2421-2429
    • /
    • 2018
  • Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant ($k_s$) is $9.1{\pm}0.1s^{-1}$ and the value is 26% higher than that of catalyst that does not use the anchor structure.

Development of dielectrophoresis chips and an electrode passivation technique for isolation/separation of nanoparticles (나노 입자 분리/분류를 위한 유전영동 칩 및 전극 패시베이션 기술 개발)

  • Park, Minsu;Noh, Hyowoong;Kang, Jaewoon;Lee, Junyeong;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2021
  • Isolation and separation of biological nanoparticles, such as cells and extracellular vesicles, are important techniques for their characterization. Dielectrophoresis (DEP) based on microfluidic chips is an effective method to isolate and separate the nanoparticles. However, the electrodes of the DEP chips are electrolyzed by the electrical signals applied to the nanoparticles. Thus, the isolation/separation efficiency of the nanoparticles is reduced considerably. Through this study, we developed a microfluidic DEP chip for reliable isolation/ separation of nanoparticles and developed a passivation technique for the protection of the DEP chip electrodes. The electrode passivation process was designed using a hydrogel and the stability of the hydrogel passivation layer was verified. The fabricated DEP chip and the proposed passivation technique were used for the collection and dispersion of the fluorescent polystyrene nanoparticles. The proposed chip and the technique for isolation and separation of nanoparticles can be leveraged in various bioelectronic applications.