• Title/Summary/Keyword: Nanodome structure

Search Result 3, Processing Time 0.022 seconds

Nanodome-patterned Transparent Conductor for Highly Responsive Photoelectric Device

  • Hong, Seung-Hyeok;Yun, Ju-Hyeong;Park, Hyeong-Ho;Gang, Gil-Mo;Seo, Cheol-Won;Kim, Jun-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.1-458.1
    • /
    • 2014
  • An effective light-managing structure has been achieved by using a nano-imprint method. A transparent conductor of indium-tin-oxide (ITO) was periodically nanodome-shaped to have a height of 200 nm with a diameter of 340 nm on a p-type Si substrate. This spontaneously formed a heterojunction between the ITO layer and Si substrate and effectively reduced the light-reflection. The ITO nanodome device response was significantly enhanced to 6010 from the value of 72.9 of a planar ITO film. The transparent conducting ITO nanodome structure efficiently manipulates the incident light driving into the light-absorber and can be applied in various photoelectric applications.

  • PDF

Transparent Conducting Nanodomes for Efficient Light Management

  • Hong, Seung-Hyouk;Yun, Ju-Hyung;Park, Hyeong-Ho;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.314.1-314.1
    • /
    • 2013
  • Transparent conducting nanoscale-domes were periodically patterned on a Si substrate by nanoimprint method. Transparent conductor of indium-tin-oxide (ITO) was shaped as a nanodome, which effectively drives the incident light effectively into a light-absorber and therefore induces a substantially enhanced photo-response. An ITO nanodome is electrically isolated from the neighboring nanodomes. This structure benefits to provide a low contact between a Si substrate and a front metal electrode giving an efficient electrical path. The ITO nanodome device showed a significantly enhanced photo-response of 6010 from the value of 72.9 of a planar ITO film. The electrical and optical advantage of an ITO nanodome is suitable for various photoelectric applications.

  • PDF