• Title/Summary/Keyword: Nanocrystalline $SnO_2$

Search Result 17, Processing Time 0.029 seconds

Preparation of SnO and SnO, SnO2 fine powder by hydrazine method (Hydrazine법에 의한 SnO, SnO2 미분말의 합성)

  • Kim, Kang-Min;Kim, Ki-Won;Cho, Pyeong-Seok;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.297-301
    • /
    • 2005
  • Nanocrystalline SnO and $SnO_{2}$ powder have been prepared by hydrazine method. Sn-Hydrazine complex was formed by the reduction between aqueous $SnCl_{2}$ solution and hydrazine monohydrate. $SnO_{2}$ nano powder was prepared by the decomposition of Sn-Hydrazine complex at $450^{\circ}C$. When NaOH was added to Sn-hydrazine complex, SnO powder with nano-sheet morphology could be prepared. This can be attributed to the role of $OH^{-}$ ion as a reducing agent.

Suppression of Charge Recombination Rate in Nanocrystalline SnO2 by Thin Coatings of Divalent Oxides in Dye-Sensitized Solar Cells

  • Lee, Chae-Hyeon;Lee, Gi-Won;Kang, Wee-Kyung;Lee, Doh-Kwon;Ko, Min-Jae;Kim, Kyoung-Kon;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3093-3098
    • /
    • 2010
  • The core-shell $SnO_2$@AO (A=Ni, Cu, Zn and Mg) films were prepared and the effects of coatings on photovoltaic properties were investigated. Studies on X-ray photoelectron spectroscopy, energy dispersive X-ray analysis and transmission electron microscopy showed the formation of divalent oxides on the surface of $SnO_2$ nanoparticles. It was commonly observed that all the dye-sensitized core-shell films exhibited higher photovoltage than the bare $SnO_2$ film. Transient photovoltage measurements confirmed that the improved photovoltages were related to the decreased time constants for electron recombination.

RF Sputtered $SnO_2$, Sn-Doped $In_2O_3$ and Ce-Doped $TiO_2$ Films as Transparent Counter Electrodes for Electrochromic Window

  • 김영일;윤주병;최진호;Guy Campet;Didier Camino;Josik Portier;Jean Salardenne
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.107-109
    • /
    • 1998
  • The $SnO_2$, Sn-doped $In_2O+3\; and \;Ce-doped\; TiO_2$ films have been prepared by RF sputtering method, and their opto-electrochemical properties were investigated in view of the applicability as counter electrodes in the electrochromic window system. These oxide films could reversibly intercalate $Li^+$ ions owing to the nanocrystalline texture, but remained colorless and transparent. The high transmittance of the lithiated films could be attributed to the prevalence of the $Sn^{4+}/Sn^{2+}\; and\; Ce^{4+}/Ce^{3+}$ redox couples having 5s and 6s character conduction bands, respectively. For the Ce-doped $TiO_2$ film, $(TiO_2)_{1-x}(CeO_2)_x$, an optimized electrochemical reversibility was found in the film with the composition of x = 0.1.

Highly transparent and resistive nanocrystalline ZnO-SnO2 films prepared by rf magnetron sputtering

  • Cha, Chun-Nam;Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.596-600
    • /
    • 2012
  • ZnO-$SnO_2$ films were deposited by rf magnetron sputtering using a ZnO-$SnO_2$ (2:1 molar ratio) target. The target was made from a mixture of ZnO and $SnO_2$ powders calcined at $800^{\circ}C$. The working pressure was 1 mTorr, and the rf power was 120 W. The ratio of oxygen to argon ($O_2$:Ar) was varied from 0% to 10%, and the substrate temperature was varied from $27^{\circ}C$ to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force spectroscopy (AFM). The ZnO-$SnO_2$ films deposited in $O_2$:Ar = 10% exhibited resistivity higher than $10^6{\Omega}cm$ and transmittance of more than 80% in the visible range.

Di(propylene glycol) Methylether (DPGME) Sensing Characteristics of SnO2-ZnO Sensor (SnO2센서의 ZnO 첨가량에 따른 di(propylene glycol) methylether (DPGME)에 대한 반응 특성)

  • Cha G. Y;Baek W. W;Yun K. Y;Lee S. T;Choi N. J;Lee D. D;Huh J. S
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.224-228
    • /
    • 2004
  • Respectively the powder made of ZnO added $SnO_2$ was prepared by coprecipitation method and the thick film gas sensor was fabricated by screen-printing technique, The morphology and phase of the powder and film was investigated by SEM and XRD. The specific area of the particle was linearly increased with ZnO contents. Target gas was di(propylene glycol) methylether ($CH_3$($OC_3$$H_{6}$ )$_2$OH, DPGME), which is simulant gas of blister gas. The gas sensing characteristics for DPGME were examined with flow type measurement system and the concentrations of target gas were controlled from 500 ppb to 1500 ppb. ZnO (2 wt%) added $SnO_2$ showed maximum sensitivity to DPGME at $300^{\circ}C$.

Fabrication of High-Efficiency Electrochemiluminescence Cell with Nanocrystalline TiO2 Electrode (나노입자 이산화티타늄 전극 기반의 고효율 전기화학형 발광 셀 제작)

  • Kwon, Hyuk-Moon;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.363-368
    • /
    • 2010
  • In this work, electrochemiluminescence (ECL) cell using nanocrysralline $TiO_2$ electrode and Ru(II) complex (Ru${(bpy)_3}^{2+}$) is fabricated for low-cost high-efficient energy conversion device application. The nanocrysrallme $TiO_2$ layer (${\sim}10{\mu}m$ thickness) with large surface area (${\sim}360m^2$/g) can largely inject electrons from nanoporous $TiO_2$ electrode and allows the oxidation/reduction of Ru(II) complex in the nanopores. The cell structure is composed of a glass/ F-doped $SnO_2$(FTO)/ porous $TiO_2$/ Ru(II) complex in acetonitrile/ FTO/ glass. The nanocrysralline $TiO_2$ layer is prepared using sol-gel combustion method. The ECL efficiency of the cell consisting of the porous $TiO_2$ layers was 250 cd/W, which was higher than that consisting of only FTO electrode (50cd/W). The nanoporous $TiO_2$ layers wwas effective for increasine ECL intensities.

Study on the Electron Injection of Newly Synthesized Organic Sensitizer in Dye-Sensitized Solar Cell

  • Gang, Tae-Yeon;Lee, Do-Gwon;Go, Min-Jae;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.310-310
    • /
    • 2010
  • Electronic and photovoltaic characteristics of two sensitizers (TA-BTD-CA and TA-BTD-St-CA), composed of a different $\pi$-conjugation in the linker group, have been investigated by theoretical and experimental methods. The electronic structure, transition dipole moment and oscillator strengths of two sensitizers have been scrutinized by using density functional theory (DFT) and time-dependent DFT (TD-DFT) method. The LUMO level and the oscillator strength of TA-BTD-St-CA was higher than that of TA-BTD-CA, which may facilitate the electron injection process as well as increase the absorption coefficient. The relative efficiencies of the electron injection from the excited sensitizer to nanocrystalline TiO2 and SnO2 films have also been investigated by nanosecond transient absorption spectroscopy. The relative electron injection efficiency of TA-BTD-St-CA exhibited similar injection efficiency for two different semiconductors. However, in the case of TA-BTD-CA sensitizer, electron injection into SnO2 was approximately three times larger than that into TiO2. This enhancement of electron injection of TA-BTD-CA for the SnO2 is due to the increment of the driving force caused by positive shift of conduction band of semiconductor, which was also confirmed from the investigation for the photovoltaic characteristics according to the electrolyte additive, such as LiI additive.

  • PDF

A Preponderant Enhancement of Conversion Efficiency by Surface Coating of $SnO_2$ Nanoparticles in Organic MK-2 Dye Sensitized Solar Cell

  • Son, Dae-Yong;Lee, Chang-Ryul;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.218-218
    • /
    • 2012
  • Nanocrystalline $SnO_2$ colloids are synthesized by hydrolysis of $SnCl_4{\cdot}5H_2O$ in aqueous ammonia solution. The synthesized $SnO_2$ nanoparticles with ca. 15 nm in diameter are coated on a fluorinedoped thin oxide (FTO) conductive substrate and heated at $550^{\circ}C$. The annealed $SnO_2$ film is treated with aqueous $TiCl_4$ solution, which is sensitzied with MK-2 dye (2-cyano-3-[5'''-(9-ethyl- 9H-carbazol-3-yl)-3',3'',3''',4-tetra-n-hexyl-[2,2',5',2'',5'',2''']-quater thiophen-5-yl]). Compared to bare $SnO_2$ film, the conversion efficiency is significantly improved from 0.22% to 3.13% after surface treatment of $SnO_2$ with $TiCl_4$, which is mainly due to the large increases in both photocurrent density from 1.33 to $9.46mA/cm^2$ and voltage from 315 to 634 mV. It is noted that little change in the amount of the adsorbed dye is detected from 1.21 for the bare $SnO_2$ to $1.28{\mu}mol/cm^2$ for the $TiCl_{4-}$ treated $SnO_2$. This indicates that the photocurrent density increased by more than 6 times is not closely related to the dye loading concentration. From the photocurrent and voltage transient spectroscopic studies, electron life time increases by about 13 order of magnitude, whereas electron diffusion coefficient decreases by about 3.6 times after $TiCl_4$ treatment. Slow electron diffusion rate offers sufficient time for regeneration kinetics. As a result, charge collection efficiency of about 40% before $TiCl_4$ treatment is improved to 95% after $TiCl_4$ treatment. The large increase in voltage is due to the significant increase in electron life time, associated with upward shift of fermi energy.

  • PDF