• 제목/요약/키워드: Nanocomposite Film

검색결과 143건 처리시간 0.029초

Nylon 6/Clay 나노복합재 필름의 연신조건에 따른 구조적 변화 (Structural Changes of Nylon 6/Clay Nanocomposite Film on Drawing Condition)

  • 강영아;김경효;이양헌;조현혹
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.352-353
    • /
    • 2003
  • Clay 분산 유/무기 나노복합재 제조기술은 실리케이트 층상구조의 점토광물을 나노 스케일의 시트상의 기본 단위로 박리(exfoliation)하여 고분자수지에 분산시킴으로써 범용 고분자의 낮은 기계적 물성의 한계를 엔지니어링 플라스틱 수준으로까지 올리고자 하는 것으로서, 기존의 무기 충진재 및 강화재의 입자크기(〉1 $\mu\textrm{m}$)를 나노 스케일까지 분산시켜 기존 무기물 충진 복합재의 단점을 한층 보완하는 것을 목표로 하고 있어 성능 및 원가 면에서 매우 유리한 방법으로 21세기의 복합재료 생산시장의 판도에 상당한 변화를 가져오게 할 수 있는 핵심기술이라 할 수 있다. (중략)

  • PDF

Electrosynthesis and Electrochemical Properties of Metal Oxide Nano Wire/ P-type Conductive Polymer Composite Film

  • Siadat, S.O. Ranaei
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권3호
    • /
    • pp.81-87
    • /
    • 2015
  • This study introduces a facile strategy to prepare metal oxide/conducting polymer nanocomposites that may have promising applications in energy storage devices. Ploy aniline/nano wire manganese dioxide (PANI/NwMnO2) was synthesized by cyclic voltammetry on glassy carbon electrode. Morphology and structure of the composite, pure PANI, MnO2 nanowires were fully characterized using XRD and SEM analysis. Electrochemical studies shows excellent synergistic effect between PANI and MnO2 nanowires which results in its capacitance increase and cycle stability against PANI electrode. Specific capacitances of PANI/NwMnO2 and PANI were 456 and 190 F/g respectively. The electrochemical performance of electrodes studied using cyclic voltammetry, Galvanostatic charge/discharge and impedance spectroscopy.

하이브리드 증착 시스템을 이용한 나노복합체 Ti-Si-N 박막의 특성 연구 (Characterization of Nanocomposite Ti-Si-N Films Prepared by a Hybrid Deposition System of A If and Sputtering Techniques)

  • 윤순영;최성룡;이미혜;김광호
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.122-127
    • /
    • 2003
  • Ti - Si - N hard films were deposited on SKD11 steel substrates by a hybrid deposition system, where TiN was deposited by AIP method while Si was incorporated by sputtering one. The microstructure of Ti-Si-N films was revealed to be a composite of TiN crystallites and amorphous Si3N4 by instrumental analyses. The highest hardness value of about 45 Gpa was obtained at the Si content of around 7.7 at.%. With increase of Si content, the size of TiN crystallites was reduced and their distribution was changed from aligned to randomly orientated states. Surface roughness of Ti-Si-N film also decreased with increase of Si content.

Preparation of $PMMA-co-MMA/TiO_2$ Composite Film by Sol-Gel Process and Its Application to OTFTs as a Gate Insulator

  • Park, Jae-Hoon;Kim, Hyun-Suck;Bong, Kang-Wook;June, Bong;Choi, Hyoung-Jin;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1146-1149
    • /
    • 2006
  • In this study, nanocomposite layer composed of PMMA-co-MMA and $TiO_2$ was prepared by sol-gel process using TTIP as a precursor and was utilized as a gate insulator of OTFTs. The composite insulator provides the lower threshold voltage and the enhanced sub threshold slope of OTFTs mainly due to its higher dielectric constant than that of the bare PMMA-co-MMA. Consequently, it is demonstrated that the sol-gel process can open an interesting direction for the fabrication of high-performance OTFTs, and contribute for OTFTs to be feasible for real applications.

  • PDF

Superhard Mo-Al-N films Composed of Grains with Different Crystallographic Orientations and/or Lattice Structures

  • Musil, J.;Stadnik, T.;Cernansky, M.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.22-26
    • /
    • 2003
  • This short communication reports on the experiment which demonstrates that superhard nanostructured films with hardness of about 40 GPa and greater can be composed not only of two or more nanocrystalline and/or amorphous phases of different materials, as it is in the case of nanocomposite coatings, but also that can be formed by a mixture of small (<10 nm) nanocrystalline grains of the same material with different crystallographic orientation and/or lattice structures. This finding opens new possibilities to develop advanced nanostructured materials with enhanced physical and functional properties.

알루미나 ($Al_2O_3$) 나노입자-PVP 나노복합 절연체층을 이용한 연성 유기박막 트랜지스터(OTFT) 제작및 전기적 특성 연구

  • 노화영;설영국;김선일;이내응
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.74-75
    • /
    • 2007
  • 최근에는 휴대성과 유연성이 뛰어난 다목적 디스플레이의 연구가 활발히 진행되고 있는데, 이러한 기술의 핵심 능동소자로서 저비용, 대면적의 응용, 휘어짐 등의 장점을 가지는 유기박막 트랜지스터(Organic Thin Film Transistors)가 널리 연구되고 있다. 본 연구에서는 기존에 문제시 되는 유기 절연체의 저유전상수와 높은 누설전류를 보완하기 위하여 나노복합 (nanocomposite) 게이트 절연체에 대한 연구를 수행하였다. 기존의 유기물 절연체가 가지는 문제점인 높은 누설전류 특성을 보완하기 위하여 높은 전기적 절연성과 고유전상수를 가지는 알루미나 ($Al_2O_3$)의 나노입자와 유기절연체의 나노복합체 박막을 형성시키고 이를 적용한 결과 게이트 누설전류를 억제시키어 소자의 특성을 향상시킬 수 있었다.

  • PDF

Reactive Hot Melt Polyurethane Adhesives Modified by Acrylic Copolymer Nanocomposites

  • Cho, Youn-Bok;Jeong, Han-Mo;Kim, Byung-Kyu
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.879-885
    • /
    • 2009
  • A macroazoinitiator (MAI) containing a poly(ethylene glycol) (PEG) segment was intercalated in the gallery of sodium montmorillonite (Na-MMT). Acrylic monomers were polymerized using this MAI intercalated in Na-MMT to prepare the acrylic copolymer nanocomposite (AN), which is a multiblock copolymer composed of two segments, an acrylic copolymer and PEG intercalated in Na-MMT (Na-MMT/PEG). When AN was used to modify the reactive hot melt polyurethane adhesive (RHA), the acrylic copolymer segment and Na-MMT/PEG synergistically enhanced the initial bond strength evolution and reduced the set time, even when the amount of Na-MMT in RHA was < 1 wt%. The viscosity of RHA increased and the tensile properties of the cured RHA film decreased due to modification with AN. These variations were more evident as the Na-MMT content in AN was increased.

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

H13 공구강의 전처리에 따른 Mo-Cu-N 코팅의 기계적 특성 (Mechanical Properties of MoN-Cu Coatings according to Pre-treatment of AISI H13 Tool Steel)

  • 박현준;문경일;김상섭
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.343-350
    • /
    • 2020
  • The degradation of mechanical properties of nitride coatings to steel substrates is one of the main challenges for industrial applications. In this study, plasma nitriding treatment was used in order to increase the mechanical properties of Mo-Cu-N coating to the H13 tool steel. The nanostructured Mo-Cu-N coating was deposited using pulsed DC magnetron sputtering method with a single alloy Mo-Cu target. Mechanical properties of MoN-Cu coated samples after nitriding were found to be relatively better than non-nitrided MoN-Cu coating.

Simulation of nanosilver migration from polystyrene nanocomposite into food simulants

  • Soleimani, Jaber;Ghanbarzadeh, Babak;Dehgannya, Jalal;Islami, Sima Baheri;Sorouraddin, Saeed M.
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.243-255
    • /
    • 2018
  • Polystyrene granules were combined with nanosilver to form a nanocomposite film. One-side migration was conducted to test into three food simulants (3% acetic acid, 10% ethanol and 95% ethanol) at $40^{\circ}C$ temperature on different period of time (2, 4, 6, 8 and 10 days). It was found that, among the simulants, the highest migration amount was obtained with 3% acetic acid, while the 95% ethanol revealed the least migration level. Diffusion coefficients of nanosilver particles into simulants were estimated by inverse simulation using experimental data of concentration variation in the simulants. The finite element method used to solve the mass transfer equation and the numerical results indicates the sameresponse with the experimental data. The numerical results confirmed that the highest diffusion coefficient for acetic acid 3% (1.82E-10 to $1.76E-9m^2\;s^{-1}$) and the lowest diffusion coefficient for ethanol 95% from 2 to 10 days were obtained, respectively. Also, results of diffusion coefficient - concentration relation showed, the diffusion coefficient had in direct correlation with time and concentration. The results indicated that, in the 3% acetic acid, due to the increasing of diffusion coefficient of silver nanoparticles, they are released faster and distributed uniformly.