• 제목/요약/키워드: Nanoclusters

검색결과 57건 처리시간 0.032초

금 나노미립자가 함침된 $TiO_2/SiO_2$ 박막의 광학적 성질 (Optical Property of Au-doped $TIO_2/SiO_2$ thin film)

  • 정미원;김지은;이경철
    • 대한화학회지
    • /
    • 제44권1호
    • /
    • pp.60-67
    • /
    • 2000
  • 표면공명흡수는 매질의 유전상수값에 의존한다. 금 나노미립자가 함침된 $TiO_2/SiO_2$ 복합산화물 박막을 $Ti(OPr^i)_4$$Si(OEt)_4$, 그리고 $HAuCl_4{\cdot}7H_2O$를 사용하여 졸-겔 방법으로 제조하였다. $TiO_2/SiO_2$ 박막에 함침된 금 나노미립자의 최대 표면 공명 흡수는 $TiO_2/SiO_2$의 몰비에 따라 540 nm에서 615 nm 까지 선형적으로 변하였다. 이러한 박막에 함침된 금 나노미립자의 크기와 구조를 TEM과 XRD로 측정하였다. 그리고 $TiO_2/SiO_2$ 박막의 유전상수값을 실험 data로부터 이론적으로 계산하였다

  • PDF

Assembly of Magnetic Nano-Fe3O4@GSH-Au NCs Core-Shell Microspheres for the Visualization of Latent Fingerprints

  • Huang, Rui;Tang, Tingting
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850128.1-1850128.10
    • /
    • 2018
  • Glutathione (GSH), the protective agent and reducing agent, has been widely used to prepare gold nanoclusters (GSH-Au NCs) with stable fluorescence properties and negative charge of the surface. Meanwhile, polyethyleneimine (PEI) was used as the modification agent to synthesize magnetic ferroferric oxide nanoparticles ($Fe_3O_4$) with fantastic dispersibility and positive charge of the surface. Based on the electrostatic adsorption force, magnetic nano-$Fe_3O_4@GSH-Au$ NCs core-shell microspheres composed of magnetic $Fe_3O_4$ nanoparticles modified by PEI as the core and GSH-Au NCs as the shell were assembled. The prepared $Fe_3O_4@GSH-Au$ NCs microspheres harbored a uniform size (88.6 nm), high magnetization (29.2 emu/g) and excellent fluorescence. Due to the coordination bond action between Au atom and sulfhydryl (-SH), amino ($-NH_2$), carboxyl (-COOH) in sweat, $Fe_3O_4@GSH-Au$ NCs could combine with latent fingerprints. In addition, $Fe_3O_4@GSH-Au$ NCs with good fluorescence and magnetism could detect fingerprints on various objects. Significantly, the powders were not easy to suspend in the air, which avoided the damage to the health of forensic experts and the fingerprints by only powder contacting. Above all, $Fe_3O_4@GSH-Au$ NCs was successfully applied to the latent fingerprint visualization, which has great potential in forensic science.

Study of CVD Growth Single-walled Carbon Nanotubes via Catalytic Layer Supported by Self-assembled Monolayer

  • Adhikari, Prashanta Dhoj;Kim, Sung-Hwan;Song, Woo-Seok;Lee, Su-Il;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.402-402
    • /
    • 2012
  • Bundles of single-walled carbon nanotube (SWCNTs) were grown using catalytic layer supported by self-assembled monolayers (SAMs). Amine-SAMs were introduced on SiO2/Si substrate (SAMs/Si) there then iron nanoclusters solution was dropped on it through spin-coating (Fe/SAMs/Si). This catalytic template was used to grow CNTs and the synthesized carbon material was confirmed the bundles of dense SWCNTs with incorporation of ca.1% nitrogen. The SAMs has played an active role to support catalytic layer and also acted as a source of N-dope onto SWCNTs in CVD.

  • PDF

Formation and Physical Properties of Yogurt

  • Lee, W.J.;Lucey, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권9호
    • /
    • pp.1127-1136
    • /
    • 2010
  • Yogurt gels are a type of soft solid, and these networks are relatively dynamic systems that are prone to structural rearrangements. The physical properties of yogurt gels can be qualitatively explained using a model for casein interactions that emphasizes a balance between attractive (e.g., hydrophobic attractions, casein cross-links contributed by calcium phosphate nanoclusters and covalent disulfide cross-links between caseins and denatured whey proteins) and repulsive (e.g., electrostatic or charge repulsions, mostly negative at the start of fermentation) forces. Various methods are discussed to investigate the physical and structural attributes of yogurts. Various processing variables are discussed which influence the textural properties of yogurts, such as total solids content, heat treatment, and incubation temperatures. A better understanding of factors contributing to the physical and structural attributes may allow manufacturers to improve the quality of yogurt.

열분해 공정을 통해 합성된 산화 코발트 나노입자의 리튬 전기화학반응성 (Lithium Electroactivity of Cobalt Oxide Nanoparticles Synthesized Using Thermolysis Process)

  • 진연호;심현우;김동완
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.636-640
    • /
    • 2011
  • Nano-sized cobalt (II) oxide nanoparticles with a high crystallinity were synthesized using thermolysis of a $Co^{2+}$-oleate precursor at 310$^{\circ}C$. The phase and morphology of as-prepared cobalt oxide nanoparticles were characterized using X-ray diffraction, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller surface area measurements. The cobalt oxide nanoparticles were found to be spherical nanoclusters with an average diameter of approximately 200 nm, consisting of tiny nanocrystals (10-20 nm). Furthermore, the Li electroactivites of the cobalt oxide nanoparticles were investigated using cyclic voltammetry and galvanostatic cycling. The cobalt oxide nanoparticles could deliver high capacities over 420 mA h $g^{-1}$ at a C/5 current rate.

Preparation of Iron Catalytic Layer onto Functionalized Silicon Substrate for Synthesis of Carbon Nanotubes

  • Adhikari, Prashanta Dhoj;Cho, Jumi;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.611-611
    • /
    • 2013
  • In this study, iron oxide nanoclusters layer (Nc) was prepared onto functionalized silicon substrate by wet method. The amine-terminated SAM fabricated on silicon substrate (APTMS/Si) was carried out by UV-treatment and immersed into the FeCl3/HCl aqueous solution. Then, Nc were immobilized onto oxidized SAM silicon substrate (SAMs/Si) through electrostatic interaction between cationic Nc and anionic SAMs/Si. This catalytic layer (Nc/SAMs/Si) was used to grow carbon nanotubes (CNTs). The characterization results clearly show that the well-graphitized CNTs were synthesized by using functionalized silicon substrate as a template having appropriate density of catalyst. These consequences show that SAM containing template is important to achieve the effective layer of catalyst to synthesize CNTs.

  • PDF

Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging

  • Yanzhi Wang;Feng Gao
    • Korean Journal of Radiology
    • /
    • 제24권9호
    • /
    • pp.871-889
    • /
    • 2023
  • C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.

자성 원자를 치환한 1차원 클러스터의 전자구조 및 자성구조 계산 (The Electronic Structure Calculations for Transition Metal Substituted Ge Chain Clusters)

  • 박기택
    • 한국자기학회지
    • /
    • 제19권5호
    • /
    • pp.157-160
    • /
    • 2009
  • Ge 원자로 구성된 1차원 체인형태의 나노클러스터에 자성전이금속 Cr 및 Mn 원자를 치환 하였을 때 자성전이금속 원자사이의 자기적 상호작용을 제1원리의 범밀도함수법을 이용하여 계산하였다. 그 결과 Ge 원자와 전이금속 원자는 반강자성적인 상호작용을 하고 있으며, Ge-Ge원자 또한 반강자성 경향을 나타내었다. 이러한 자기 교환상호작용은 Ge 원자 여러 원자 층을 자화시켜 일어나고 있으며, 그 크기도 작지 않았다. 또한 자기 교환상호작용은 Ge 원자 수에 크게 의존하였다.

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

용액성장법의 성장조건이 ZnS 나노클러스터의 구조적, 광학적 특성에 미치는 영향 (Effects of Growth Conditions on Structural and Optical Properties of ZnS Nanoclusters)

  • 이상욱;이종원;조성룡;김선태;박인용;최용대
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.558-561
    • /
    • 2001
  • In this study, the ZnS nanosized thin films were grown by the solution growth technique (SGT), and their structural and optical properties were examined. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). With decreasing growth temperature and decreasing concentration of precursor solution, the surface morphology of film was found to be improved. In particular, this is the first time that the surface morphology dependence of ZnS film grown by SGT on the ammonia concentration is reported. The energy band gaps of samples were shown to vary from 3.69 eV to 3.91 eV, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films.

  • PDF