• Title/Summary/Keyword: Nanobelts

Search Result 28, Processing Time 0.03 seconds

A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures

  • Tyona, M.D.;Osuji, R.U.;Ezema, F.I.
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.43-58
    • /
    • 2013
  • Zinc oxide (ZnO) is a unique semiconductor material that exhibits numerous useful properties for dye-sensitized solar cells (DSSCs) and other applications. Various thin-film growth techniques have been used to produce nanowires, nanorods, nanotubes, nanotips, nanosheets, nanobelts and terapods of ZnO. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in solar cells, optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by various techniques and their application in DSSCs. The application of ZnO nanowires, nanorods in DSSCs became outstanding, providing a direct pathway to the anode for photo-generated electrons thereby suppressing carrier recombination. This is a novel characteristic which increases the efficiency of ZnO based dye-sensitized solar cells.

The structure of $Ga_2O_3$ nanomaterials synthesized by the GaN single crystal (GaN 단결정에 의해 제조된 $Ga_2O_3$ 나노물질의 구조)

  • 박상언;조채룡;김종필;정세영
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.120-120
    • /
    • 2003
  • The metallic oxide nanomaterials including ZnO, Ga$_2$O$_3$, TiO$_2$, and SnO$_2$ have been synthesized by a number of methods including laser ablation, arc discharge, thermal annealing procedure, catalytic growth processes, and vapor transport. We have been interested in preparing the nanomaterials of Ga$_2$O$_3$, which is a wide band gap semiconductor (E$_{g}$ =4.9 eV) and used as insulating oxide layer for all gallium-based semiconductor. Ga$_2$O$_3$ is stable at high temperature and a transparent oxide, which has potential application in optoelectronic devices. The Ga$_2$O$_3$ nanoparticles and nanobelts were produced using GaN single crystals, which were grown by flux method inside SUS$^{TM}$ cell using a Na flux and exhibit plate-like morphologies with 4 ~ 5 mm in size. In these experiments, the conventional electric furnace was used. GaN single crystals were pulverized in form of powder for the growth of Ga$_2$O$_3$ nanomaterials. The structure, morphology and composition of the products were studied mainly by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM).).

  • PDF

Fabrication of ZnO and CuO Nanostructures on Cellulose Papers

  • Nagaraju, Goli;Ko, Yeong Hwan;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.315.1-315.1
    • /
    • 2014
  • The use of cellulose papers has recently attracted much attention in various device applications owing to their natural advantageous properties of earth's abundance, bio-friendly, large-scale production, and flexibility. Conventional metal oxides with novel structures of nanorods, nanospindles, nanowires and nanobelts are being developed for emerging electronic and chemical sensing applications. In this work, both ZnO (n-type) nanorod arrays (NRAs) and CuO (p-type) nanospindles (NSs) were synthesized on cellulose papers and the p-n junction property was investigated using the electrode of indium tin oxide coated polyethylene terephthalate film. To synthesize ZnO and CuO nanostructures on cellulose paper, a simple and facile hydrothermal method was utilized. First, the CuO NSs were synthesized on cellulose paper by a simple soaking process, yielding the well adhered CuO NSs on cellulose paper. After that, the ZnO NRAs were grown on CuO NSs/cellulose paper via a facile hydrothermal route. The as-grown ZnO/CuO NSs on cellulose paper exhibited good crystalline and optical properties. The fabricated p-n junction device showed the I-V characteristics with a rectifying behaviour.

  • PDF

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • Park, Sin-Yeong;Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF

One-Dimensional MgO Nanostructures with Various Morphologies Grown by Thermal Evaporation Method under Atmospheric Environment (대기 분위기에서 열증발법에 의해 성장된 여러 가지 형상의 일차원 MgO 나노구조)

  • Nam-Woo Kim;Jin-Su Kim;Geun-Hyoung Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.279-284
    • /
    • 2023
  • One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 ℃, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 ℃, 1,000 ℃ and 1,100 ℃, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.

Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method (수열법으로 성장한 ZnO Nanorod/ZnO/Si(100)의 특성)

  • Jeong, Min-Ho;Jin, Yong-Sik;Choi, Sung-Min;Han, Duk-Dong;Choi, Dae-Kue
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • Nanostructures of ZnO, such as nanowires, nanorods, nanorings, and nanobelts have been actively studied and applied in electronic or optical devices owing to the increased surface to volume ratio and quantum confinement that they provide. ZnO seed layer (about 40 nm thick) was deposited on Si(100) substrate by RF magnetron sputtering with power of 60 W for 5 min. ZnO nanorods were grown on ZnO seed layer/Si(100) substrate at $95^{\circ}C$ for 5 hr by hydrothermal method with concentrations of $Zn(NO_3)_2{\cdot}6H_2O$ [ZNH] and $(CH_2)_6N_4$ [HMT] precursors ranging from 0.02M to 0.1M. We observed the microstructure, crystal structure, and photoluminescence of the nanorods. The ZnO nanorods grew with hexahedron shape to the c-axis at (002), and increased their diameter and length with the increase of precursor concentration. In 0.06 M and 0.08 M precursors, the mean aspect ratio values of ZnO nanorods were 6.8 and 6.5; also, ZnO nanorods had good crystal quality. Near band edge emission (NBE) and a deep level emission (DLE) were observed in all ZnO nanorod samples. The highest peak of NBE and the lower DLE appeared in 0.06 M precursor; however, the highest peak of DLE and the lower peak of NBE appeared in the 0.02 M precursor. It is possible to explain these phenomena as results of the better crystal quality and homogeneous shape of the nanorods in the precursor solution of 0.06 M, and as resulting from the bed crystal quality and the formation of Zn vacancies in the nanorods due to the lack of $Zn^{++}$ in the 0.02 M precursor.

Errors of Surface Image Due to the Different Tip of Nano-Indenter (나노인덴터 압입팁의 특성에 따른 표면 이미지 오차 연구)

  • Kim, Soo-In;Lee, Chan-Mi;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.346-351
    • /
    • 2009
  • Due to the decrease of line width and increase of the integration level of the device, it is expected that 'Bottom-up' method will replace currently used 'Top-down' method. Researches about 'Bottom-up' device production such as Nanowires and Nanobelts are widely held on. To utilize these technologies in devices, properties of matter should be exactly measured. Nano-indenters are used to measure the properties of nano-scale structures. Additionally, Nano-indenters provide AFM(Atomic Force Microscopy) function to get the image of the surface and get physical properties for exact position of nano-structure using this image. However, nano-indenter tips have relatively much bigger size than ordinary AFM probes, there occurs considerable error in surface image by Nano-Indenter. Accordingly, this research used 50nm Berkovich tip and 1um $90^{\circ}$ Conical tip, which are commonly used in Nano-Indenter. To find out the surface characteristics for each kind of tip, we indented the surface of thin layer by each tip and compared surface image and indentation depth. Then, we got image of 100nm-size structure by surface scanning using Nano-Indenter and compared it with surface image gained by current AFM technology. We calculated the errors between two images and compared it with theoretical error.