• Title/Summary/Keyword: Nanobelts

Search Result 28, Processing Time 0.025 seconds

${\beta}-Ga_2O_3$ Nanomaterials Synthesized from Mechanically Ground GaN Powders by a Thermal Annealing (기계적으로 연마한 GaN 분말로부터 열처리로 합성된 ${\beta}-Ga_2O_3$ 나노물질)

  • Park, Kwang-Soo;Sun, Kyu-Tae;In, Ki-Joo;Sung, Man-Young;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.158-160
    • /
    • 2001
  • ${\beta}-Ga_2O_3$ nanobelts and nanoparticles were synthesized by a thermal annealing of as-milled GaN powders at $930^{\circ}C$ in nitrogen and oxygen atmosphere. respectively. The width of the nanobelts are $20\;nm{\sim}1000\;nm$. the thickness of the nanobelts are 100 nm. A bundle of the nanobelts is several centimeters in length. The lattice structure of these nanobelts and nanoparticles was identified to be a monoclinic ${\beta}-Ga_2O_3$ by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED).

  • PDF

Synthesis and Optical Properties of the Semiconductor Lead Sulfide Nanobelts

  • Yang, Xiao hong;Wu, Qing Sheng;Ding, Ya Ping;Liu, Jin ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.377-380
    • /
    • 2006
  • The semiconductor PbS nanobelts (width 50-120 nm and length over 3 $\mu$m) were self-assembled in a simple reverse micelle solvent system containig the surfactant of polyoxyethylene (9) dodecy ether $(C_{12}E_9)$. The nanobelts synthesized were found to possess cube galena poly-crystal structure with high purity when analyzed by ED and X-ray diffraction. Significant “blue shift” from bulk material was observed on the PbS nanobelts using photoluminescence and UV-Vis spectroscopy. A mechanism involving the possible formation of nanobelts based on surfactant template was also proposed.

Synthesis of $\beta$-$Ga_2$$O_3 Nanobelts and Nanoparticles from Mechanically Ground GaN Powders with Different Thermal Annealing Atmospheres (기계적으로 연마한 GaN 분말로부터 열처리 분위기를 달리한 $\beta$-$Ga_2$$O_3 나노벨트 및 나노입자의 합성)

  • Kim, Byung-Cheul;Sun, Kyu-Tae;Park, Kwang-Soo;Im, Ki-Joo;Noh, Tae-Yong;Nahm, Sahn;Sung, Man-Young;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.965-971
    • /
    • 2001
  • $\beta$-Ga$_2$O$_3$ nanobelts and nanoparticles were synthesized from mechanically ground GaN powders with thermal annealing in a nitrogen atmosphere and an oxygen atmosphere, respectively. The study of field emission scanning electron microscopy (FESEM) on the microstructures of nanomaterials revealed that the nanobelts synthesized in the nitrogen atmosphere are with the range of 20~1000nm width and 10 ~100nm thickness, and that nanomaterials are nanoparticles with 20~50nm radius obtained by thermal annealing in an oxygen atmosphere. The crystal structure of the $\beta$-Ga$_2$O$_3$ nanobelts and nanoparticles was in this study investigated by X-ray diffractometer (XRD) and high-resolution transmission electron microscope (HRTEM). The formation processes of the nanobelts and nanoparticles will be discussed in this paper.

  • PDF

The study on the synthesise of Ga$_2$O$_3$ nanomaterials (Ga$_2$O$_3$ 나노물질 합성에 관한 연구)

  • 이종수;박광수;노태용;성만영;김상식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.13-17
    • /
    • 2002
  • Ga$_2$O$_3$ nanomaterials were synthesized from mechanically ground GaN powders with thermal annealing Ga$_2$O$_3$ nanobelts were farmed in a nitrogen atmosphere, while Ga$_2$O$_3$ nanoparticles were formed inan oxygen atmosphere. The structural properties of the Ga$_2$O$_3$ nanomaterials were investigated by X-ray diffractometer (XRD) and high-resolution transmission eleotron microscope (HRTEM). The study of field emission scanning electron microscopy (FESEM) on the microstructures of nanomaterials revealed that the nanobelts are with the range of about 10∼200nm width and 10∼50nm thickness, and that nanoparticles are with the range of about 20∼50nm radius. On the basis of XRD and HRTEM data, we determined that the nanobelts grow toward a direction perpendicular to the (010) lattice plane and that they are enclosed by facets of the (10T) and (101) lattice planes. The formation of the nanobelts may be described by the vapor-solid(VS) mechanism, and the supersaturation device of gaseous phase may play an important role in the formation of Ga$_2$O$_3$ nanomaterials.

  • PDF

Cathodoluminescence properties of $Ga_2O_3$ and ZnO nanomaterials ($Ga_2O_3$와 ZnO 나노물질의 CL특성)

  • Lee, Jong-Soo;Kang, Myung-Il;Park, Il-Woo;Sung, Man-Young;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.97-98
    • /
    • 2002
  • $Ga_2O_3$ nanobelts were synthesized from mechanically ground GaN powders with a thermal annealing in a nitrogen atmosphere. The nanobelts are with the range of about $10{\sim}200nm$ width and $10{\sim}50nm$ thickness. Three different ZnO nanomaterials (nanobelts, nanorods, and nanowires) were synthesized at three different substrate temperatures from the thermal evaporation of ball-milled ZnO powders at $1380^{\circ}C$. In cathodoluminescence(CL), the peak energy of near band-edge(NBE) emission was determined for nanobelts, nanorods, and nanowires.

  • PDF

Selective synthesis of ZnO nanomaterials and their characteristic properties (반도체 ZnO 나노물질의 선택적 합성 및 특성)

  • Kang, Myung-Il;Park, Kwang-Sue;Lee, Jong-Soo;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.19-22
    • /
    • 2002
  • Three different ZnO nanomaterials (nanobelts, nanorods, and nanowires) were synthesized at three different substrate temperatures from the thermal evaporation of ball-milled ZnO powders at $1380^{\circ}C$. Transmission electron microscopy (TEM) revealed that the ZnO nanobelts are single crystalline with the growth direction perpendicular to the (010) lattice planes, and that the ZnO nanorods and nanowires are single crystalline with the growth directions perpendicular to the (001) and (110) lattice planes, respectively. In photoluminescence (PL), the peak energy of near band-edge (NBE) emission was determined for nanobelts, nanorods, and nanowires.

  • PDF

Synthesization of ZnO nanomaterials

  • Lee, Jong-Soo;Min, Byung-Don;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.1-5
    • /
    • 2003
  • ZnO nanobelts, nanorods, and nanowires were synthesized at three different substrate temperatures from the thermal evaporation of ball-milled ZnO powders at 1380$^{\circ}C$. Transmission electron microscopy (TEM) revealed that the ZnO nanobelts are single crystalline with the growth direction perpendicular to the (010) lattice planes, and that the ZnO nanorods and nanowires are single crystalline with the growth directions perpendicular to the (001) and (110) lattice planes, respectively. In cathodoluminescence (CL), the peak energy of near bandedge (NBE) emission was determined for nanobelts, nanorods, and nanowires.

Nanoscale Morphology of Bis(1-anthraquinoxy)glycols

  • Kwon, Soon-Sik;Liang, Hui;Kim, Jong-Pil;Lee, Young-A;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2065-2068
    • /
    • 2007
  • The nanoscale morphologies on a series of new anthraquinone substitutes have been carried out. Among the substitutes, only bis[2-(1-anthraquinonoxy)-ethyl]ether in a mixture of dichloromethane/acetone (1/1) slowly forms uniform nanowires with 80-120 nm diameters. The same compound in a mixture of dichloromethane/tetrahydrofuran (1/1) slowly produces uniform nanobelts with 400-600 nm widths. Thus, both the spacer lengths and the solvent effects of the compounds are important factors for the formation of nanoscale morphologies. The nano patterns seem to be formed by the π-π interactions between the anthraquinone moieties.