DOI QR코드

DOI QR Code

Nanoscale Morphology of Bis(1-anthraquinoxy)glycols

  • Kwon, Soon-Sik (Department of Chemistry, Pusan National University) ;
  • Liang, Hui (Department of Chemistry, Pusan National University) ;
  • Kim, Jong-Pil (Pusan Center, Korea Basic Science Institute) ;
  • Lee, Young-A (Department of Chemistry, Chonbuk National University) ;
  • Jung, Ok-Sang (Department of Chemistry, Pusan National University)
  • Published : 2007.11.20

Abstract

The nanoscale morphologies on a series of new anthraquinone substitutes have been carried out. Among the substitutes, only bis[2-(1-anthraquinonoxy)-ethyl]ether in a mixture of dichloromethane/acetone (1/1) slowly forms uniform nanowires with 80-120 nm diameters. The same compound in a mixture of dichloromethane/tetrahydrofuran (1/1) slowly produces uniform nanobelts with 400-600 nm widths. Thus, both the spacer lengths and the solvent effects of the compounds are important factors for the formation of nanoscale morphologies. The nano patterns seem to be formed by the π-π interactions between the anthraquinone moieties.

Keywords

References

  1. Chun, I. S.; Kwon, J. A.; Yoon, H. J.; Bae, M. N.; Hong, J.; Jung, O.-S. Angew. Chem., Int. Ed. 2007, 46, 4960 https://doi.org/10.1002/anie.200701152
  2. Chun, I. S.; Lee, K. S.; Hong, J.; Do, Y.; Jung, O.-S. Chem. Lett. 2007, 36, 548 https://doi.org/10.1246/cl.2007.548
  3. Yoon, H. J.; Chun, I. S.; Na, Y. M.; Lee, Y.-A.; Jung, O.-S. Chem. Commun. 2007, 492
  4. Chan, E. M.; Mathies, R. A.; Alivisatos, A. P. Nano Lett. 2003, 3, 199 https://doi.org/10.1021/nl0259481
  5. Liu, H.; Li, Y.; Jiang, L.; Luo, H.; Xiao, S.; Fang, H.; Li, H.; Zhu, D.; Yu, D.; Xu, J.; Xiang, B. J. Am. Chem. Soc. 2002, 124, 13370 https://doi.org/10.1021/ja0280527
  6. Jonkheijm, P.; Stutzmann, N.; Chen, Z.; de Leeuw, D. M.; Meijer, E. W.; Schenning, A. P. H. J.; Wurthner, F. J. Am. Chem. Soc. 2006, 128, 9535 https://doi.org/10.1021/ja061966z
  7. Iwaura, R.; Hoeben, F. J. M.; Masuda, M.; Schenning, A. P. H. J.; Meijer, E. W.; Shimizu, T. J. Am. Chem. Soc. 2006, 128, 13298 https://doi.org/10.1021/ja064560v
  8. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353 https://doi.org/10.1002/adma.200390087
  9. Liu, B.; Zeng, C. J. Am. Chem. Soc. 2004, 126, 8124 https://doi.org/10.1021/ja048195o
  10. Colfen, H.; Mann, S. Angew. Chem., Int. Ed. 2003, 42, 2350 https://doi.org/10.1002/anie.200200562
  11. Velikov, K. P.; Christova, C. G.; Dullens, R. P. A.; van Blaaderen, A. Science 2002, 296, 106 https://doi.org/10.1126/science.1067141
  12. Yu, S.-H.; Colfen, H. J. Mater. Chem. 2004, 14, 2124 https://doi.org/10.1039/b401420k
  13. Sun, X. M.; Li, Y. D. Chem.-Eur. J. 2003, 9, 2229 https://doi.org/10.1002/chem.200204394
  14. Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, 393 https://doi.org/10.1038/46509
  15. Peng, Q.; Dong, Y. S.; Li, Y. D. Angew. Chem., Int. Ed. 2003, 42, 3027 https://doi.org/10.1002/anie.200250695
  16. Shi, H. T.; Qi, L. M.; Ma, J. M.; Cheng, H. M. J. Am. Chem. Soc. 2003, 125, 3450 https://doi.org/10.1021/ja029958f
  17. Witesides, G. M.; Grzybowski, B. Science 2002, 295, 2418 https://doi.org/10.1126/science.1070821
  18. Yu, S.-H.; Colfen, H.; Antonietti, M. J. Phys. Chem. B 2003, 107, 7396 https://doi.org/10.1021/jp034009+
  19. Busch, S.; Dolhaine, H.; DuChesne, A.; Heinz, S.; Hochrein, O.; Laeri, F.; Podebrad, O.; Vietze, U.; Weiland, T.; Knief, R. Eur. J. Inorg. Chem. 1999, 643
  20. Mann, S. Angew. Chem., Int. Ed. 2000, 39, 3392 https://doi.org/10.1002/1521-3773(20001002)39:19<3392::AID-ANIE3392>3.0.CO;2-M
  21. Sun, X.; Dong, S.; Wang, E. J. Am. Chem. Soc. 2005, 127, 13102 https://doi.org/10.1021/ja0534809
  22. Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133 https://doi.org/10.1021/cr9700282
  23. Abdallah, D. J.; Weiss, R. G. Adv. Mater. 2000, 12, 1237 https://doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B
  24. Palmans, A. R. A.; Vekeman, A. J. M.; Hikmet, R. A.; Fischer, H.; Meijer, E. W. Adv. Mater. 1998, 10, 873 https://doi.org/10.1002/(SICI)1521-4095(199808)10:11<873::AID-ADMA873>3.0.CO;2-H
  25. Chang, J. Y.; Yeon, J. R.; Shin, Y. S.; Han, M. J.; Hong, S.-K. Chem. Mater. 2000, 12, 1076
  26. Bushey, M. L.; Nguyen, T.-Q.; Zhang, W.; Horoszewski, D.; Nuckolls, C. Angew. Chem., Int. Ed. 2004, 43, 5546 https://doi.org/10.1002/anie.200460150
  27. Sakamoto, A.; Ogata, D.; Shikata, T.; Hanabusa, K. Macromolecules 2005, 38, 8983 https://doi.org/10.1021/ma051489p
  28. Brunsveld, L.; Schenning, A. P. H. J.; Broeren, M. A. C.; Janssen, H. M.; Vekemans, J. A. J. M.; Meijer, E. W. Chem. Lett. 2000, 292
  29. Van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 14759 https://doi.org/10.1021/ja020984n
  30. Ishi-i, T.; Yaguma, K.; Kuwahara, R.; Taguri, Y.; Mataka, S. Org. Lett. 2006, 8, 585 https://doi.org/10.1021/ol052779t
  31. De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wurthner, F.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; De Schryver, F. C. Nano Lett. 2005, 5, 77 https://doi.org/10.1021/nl048360y
  32. Liu, H.; Li, Y.; Xiao, S.; Li, H.; Jiang, L.; Zhu, D.; Xiang, B.; Chen, Y.; Yu, D. J. Phys. Chem. B 2004, 108, 7744 https://doi.org/10.1021/jp049455r
  33. Walter, D.; Neuhauser, D.; Roi, B. Chem. Phys. 2004, 299, 139 https://doi.org/10.1016/j.chemphys.2003.12.015
  34. Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.; Schenning, A. P. H. J.; Del Guerzo, A.; Desvergne, J.-P.; Meijer, E. W.; Maan, J. C. Langmuir 2005, 21, 2108 https://doi.org/10.1021/la047166o
  35. Kogan, N. M.; Rabinowitz, R.; Levi, P.; Gibson, D.; Sandor, P.; Schlesinger, M.; Mechoulam, R. J. Med. Chem. 2004, 47, 3800 https://doi.org/10.1021/jm040042o
  36. Hui, L.; Cha, M. S.; Lee, Y.-A.; Lee, S. S.; Jung, O.-S. Inorg. Chem. Commun. 2006, 10, 71 https://doi.org/10.1016/j.inoche.2006.09.006
  37. Fang, J. P.; Lu, T.; Kim, H.; Delgado, I.; Geoffroy, P.; Atwood, J. L; Gokel, G. W. J. Org. Chem. 1991, 56, 7059 https://doi.org/10.1021/jo00025a021