• 제목/요약/키워드: Nano-surface Treatment

검색결과 408건 처리시간 0.037초

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF

Ar-N2 플라즈마가 Cu 표면에 미치는 구조적 특성 분석 (Structural Characteristics of Ar-N2 Plasma Treatment on Cu Surface)

  • 박해성;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.75-81
    • /
    • 2018
  • Cu-Cu 웨이퍼 본딩 강도를 향상시키기 위한 Cu 박막의 표면처리 기술로 $Ar-N_2$ 플라즈마 처리 공정에 대해 연구하였다. $Ar-N_2$ 플라즈마 처리가 Cu 표면의 구조적 특성에 미치는 영향을 X선 회절분석법, X선 광전자 분광법, 원자간력현미경을 이용하여 분석하였다. Ar 가스는 플라즈마 점화 및 이온 충격에 의한 Cu 표면의 활성화에 사용되고, $N_2$ 가스는 패시베이션(passivation) 층을 형성하여 -O 또는 -OH와 같은 오염으로부터 Cu 표면을 보호하기 위한 목적으로 사용되었다. Ar 분압이 높은 플라즈마로 처리한 시험편은 표면이 활성화되어 공정 이후 더 많은 산화가 진행되었고, $N_2$ 분압이 높은 플라즈마 시험편에서는 Cu-N 및 Cu-O-N과 같은 패시베이션 층과 함께 상대적으로 낮은 수치의 산화도가 관찰되었다. 본 연구에서는 $Ar-N_2$ 플라즈마 처리가 Cu 표면에서 Cu-O 형성 억제 반응에 기여하는 것을 확인할 수 있었으나 추가 연구를 통하여 질소 패시베이션 층이 Cu 웨이퍼 전면에 형성되기 위한 플라즈마 가스 분압 최적화를 진행하고자 한다.

3D 프린터로 제작된 회로의 전기전도성 및 접착강도 향상을 위한 UV 소결 기술 (UV Treatment Technique for High Electrical Conductivity and Adhesion Strength of 3D Printed Circuit)

  • 이세훈;권오창;이유미;이헌주;문명운
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.340-340
    • /
    • 2015
  • 상지 절단 장애인들을 위한 미관형 의수는 95% 이상의 시장 보급률을 보인다. 하지만 외부 형상 향상에만 연구 초점이 맞추어져 있어 많은 장애인들이 의수를 착용할 때 차가운 표면으로 인해 이질감을 느낀다. 이로 인해 의수 제작 업체 및 절단 장애인들은 착용 시 이질감이 적은 의수의 보급을 희망하고 있다. 그러므로 본 연구에서는 인체와 유사한 온도를 발생시켜 이질감을 감소시키는 의수를 개발하기 위해 유연 기판인 TPU (Temperature Polyurethane)와 PET (Polyethylene terephthalate) 위에 상용 silver nano paste를 3D 프린터로 인쇄하였으며, UV 표면처리를 사용하여 단시간 내에 낮은 저항과, 높은 회로 접착강도를 갖는 회로를 개발 하였다.

  • PDF

A Study on Development of the Three-Dimensional Numerical Model to Analyze the Casting Process: Mold Filling and Solidification

  • Mok Jinho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1488-1502
    • /
    • 2005
  • A three dimensional model was developed to analyze the mold filling and solidification in the casting processes. The model uses the VOF method for the calculation of the free surface and the modified Equivalent Specific Heat method for the treatment of the latent heat evolution. The solution procedure is based on the SIMPLER algorithm. The complete model has been validated using the exact solutions for phase change heat transfer and the experimental results of broken water column. The three-dimensional model has been applied to the benchmark test and the results were compared to those from experiment, a two-dimensional analysis, and another three dimensional numerical model.

$Ti:LiNbO_3$ 도파로 제작을 위한 열처리 과정 동안 강유전 도메인 특성에 미치는 영향 (Ferroelectric domain inversion in $LiNbO_3$ crystal plate during heat treatment for Ti in-diffusion)

  • 양우석;이형만;권순우;김우경;이한영;윤대호
    • 한국결정성장학회지
    • /
    • 제15권3호
    • /
    • pp.124-127
    • /
    • 2005
  • [ $Ti:LiNbO_3$ ], 광도파로 제작을 위해 큐리온도$(T_c)$ 아래에서 백금박스 내에서 알곤 과 산소 분위기 내에서 열처리 과정 동안 기판 표면의 강유전 도메인 특성 변화를 관찰하였다. 열처리 된 $LiNbO_3$ 기판의 +Z면의 경우 전체적으로 약 $1.6{\mu}m$ 두께로 도메인 반전이 이루어 졌으며, 표면에서 etch hillock이 관찰되었다. $LiNbO_3$ 결정 표면의 Li 이온이 외부로 확산 되는 영향을 감소시킬 수 있는 환경에 있는 기판 면에서 하나의 도메인이 관찰되었으며, 이때 결정 표면에서의 식각특성, 결정성 및 양이온 분포변화에 관하여 X-선 회절, AFM 및 SIMS를 이용하여 분석하였다.

Bioinspired Metal Surfaces by Plasma Treatment

  • 유의선;고태준;오규환;문명운
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.97-97
    • /
    • 2013
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가 (Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated)

  • 오미영;;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.