• Title/Summary/Keyword: Nano-silica particles

Search Result 129, Processing Time 0.03 seconds

A Study on the Zeta Potential Measurement and the Stability Analysis of Nano Fluids using a Particle Image Processing System (입자 영상 처리 시스템을 이용한 콜로이드 입자의 제타포텐셜 측정 및 나노유체 분산 특성 연구)

  • Lee, J.K.;Kim, S.C.;Kim, H.J.;Lee, C.G.;Ju, C.H.;Lee, L.C.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Zeta potential measurements of colloid particles suspended in a liquid are performed by a Zeta Meter developed. There are many applications of colloid stability in spray technology, paints, wastewater treatment, and pharmaceuticalse. Zeta potentials of charged particles are obtained by measuring the electrophoretic velocities of the particles using video enhanced microscopy and image analysis program. The values of zeta potential of polystyrene latex(PSL), $silica(SiO_2)$M, polyvinylidence difluoride(PVDF), silicon nitride, and alumina particles in deionized (DI) water were measured to be -40.5, -31.9, -25.2, -15.1 and -10.1mV, respectively. The particles having high zeta potential less than -20 mV are stable in DI water, because the double layers of them have strong repulsive forces mutually, and the particles having low zeta potential over -20mV are unstable due to Van Der Waals forces. Silica(>20nm), PSL, aluminum and PVDF particles were found to be stable that would remain separate and well disperse, while silicon nitride and alumina particles were found to be unstable that would gradually agglomerate in DI water.

  • PDF

Electrical and Mechanical Properties for Micro-and-Nano Mixture Composites using Electric Field Dispersion Technique (전기장 분산기술을 이용한 에폭시 마이크로-나노 입자가 혼합된 콤포지트의 전기적 그리고 기계적특성)

  • Cho, Dae-Lyoung;Han, Jin-Hee;Kim, Jung-Joong;Kim, Jung-Hoon;Yoo, Byoung-Bok;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.98-98
    • /
    • 2010
  • A epoxy/multilayered silicate nanocomposite was prepared by a new AC electric application method and micro silica particle was poured into the nanocomposite in order to prepare epoxy/micro-and-nano- mixed composites (EMNC). Electric insulation breakdown strength was measured in a sphere-sphere electrode system designed for the prevention of edge breakdown and the data were estimated by Weibull plot. As the exfoliated silicate nano-plates were homogeniously dispersed in the micro silica particles, the insulation property was higher.

  • PDF

Thermal Properties of Copolyetherester/silica Nanocomposites

  • Baik, Doo-Hyun;Kim, Hae-Young;Kwon, Sun-Jin;Kwon, Myung-Hyun;Lee, Han-Sup;Youk, Ji-Ho;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.367-371
    • /
    • 2006
  • Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.

Effect of SPR Chip with Nano-structured Surface on Sensitivity in SPR Sensor (나노형상을 가진 표면플라즈몬공명 센서칩의 감도 개선 효과)

  • Cho, Yong-Jin;Kim, Chul-Jin;Kim, Namsoo;Kim, Chong-Tai;Kim, Tae-Eun;Kim, Hyo-Sop;Kim, Jae-Ho
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2010
  • Surface plasmon resonance (SPR) which is utilized in thin film refractometry-based sensors has been concerned on measurement of physical, chemical and biological quantities because of its high sensitivity and label-free feature. In this paper, an application of SPR to detection of alcohol content in wine and liquor was investigated. The result showed that SPR sensor had high potential to evaluate alcohol content. Nevertheless, food industry may need SPR sensor with higher sensitivity. Herein, we introduced a nano-technique into fabrication of SPR chip to enhance SPR sensitivity. Using Langmuir-Blodgett (LB) method, gold film with nano-structured surface was devised. In order to make a new SPR chip, firstly, a single layer of nano-scaled silica particles adhered to plain surface of gold film. Thereafter, gold was deposited on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. In this study, two types of silica particles, or 130 nm and 300 nm, were used as template beads and sensitivity of the new SPR chip was tested with ethanol solution, respectively. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivity showed improvement of 95% over the conventional one.

Synthesis and Electrochemical Performance of Mesoporous Hollow Sphere Shape LiMn2O4 using Silica Template (실리카 템플레이트를 이용하여 다공성 중공형태를 갖는 LiMn2O4 합성 및 전기화학적 특성 연구)

  • Ryu, Seong-Hyeon;Ryu, Kwang-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2011
  • $LiMn_2O_4$ with mesoporous hollow sphere shape was synthesized by precipitation method with silica template. The synthesized $LiMn_2O_4$ has nanosized first particle and mesoporous hollow sphere shape. Silica template was removed by chemical etching method using NaOH solution. When the concentration of NaOH solution was increased, first particle size of manganese oxide was decrease and confirmed mesoporous hollow shpere shape. X-ray diffraction(XRD) patterns revealed that the synthesized samples has spinel structure with Fd3m space group. In case the ratio of silica and maganese salt increased, the size of first particles was decreased. The tetragoanal $LiMn_2O_4$ with micron size was synthesized at ratio of silica and manganese salt over 1 : 9. The prepared samples were assembled as cathode materials of Li-ion battery with 2032 type coin cell and their electrochemical properties are examined by charge-discharge and cyclic performance. Electrochemical measurements show that the nano-size particles had lower capacity than micron-size particles. But, cyclic performance of nano-size particles had better than that of micron-size particles.

Characterization of silica nano-particle filled poly (ethylene 2,6-naphthalate) (실리카 나노입자 충진 폴리에틸렌 나프탈레이트의 특성)

  • Ahn, Seon-Hoon;Kim, Seong-Hun;Im, Seung-Soon;Lee, Seung-Goo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.52-55
    • /
    • 2003
  • Poly (ethylene 2, 6-naphthalate) (PEN) has been used for a high performance engineering plastics such as fiber, film, and packaging, because of excellent physical properties and outstanding gas barrier characteristics [1-2]. However, the application of PEN is limited because PEN exhibits a relatively high melt viscosity. Recently, many researches for organic/inorganic composites by applying nano-particles to the polymer matrix have been carried out [3], and the nano-particles exhibited greatly improved mechanical and rheological properties [4]. (omitted)

  • PDF

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica-Rice Husk Ash Ternary Blended Concrete

  • Najigivi, Alireza;Khaloo, Alireza;zad, Azam Iraji;Rashid, Suraya Abdul
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.225-238
    • /
    • 2013
  • In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement-nano silica (NS)-rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of $SiO_2$ particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg-Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

Study on the Thermomechanical Properties of Epoxy-Silica Nanocomposites by FTIR Molecular Structure Analyses (FTIR 분자구조 해석을 통한 에폭시-실리카 나노복합소재의 열기계적 물성 연구)

  • Jang, SeoHyun;Han, Yusu;Hwang, DoSoon;Jung, Juwon;Kim, YeongKook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.51-57
    • /
    • 2021
  • This paper analyzed the effects of the concentration of nano-silica particles contained in epoxy resin on the thermomechanical properties of the composite materials. The 12nm sized nanoparticles were mixed with epoxy polymer by 5 different weight ratios for the test samples. The glass transition temperature, stress relaxation, and thermal expansion behaviors were measured using dymanic mechanical analyzer (DMA) and thermomechanical analyzer (TMA). It was shown that the nano particle mixing ratios had significant influences on the viscoelastic behaviors of the materials. As the content of the silica particles was increased, the elastic modulus was also increased, while the glass transition temperatures were decreased. Fourier Transform Infrared Spectroscopy (FTIR) results played an important role in determining the causes of the property changes by the filler contents in terms of the molecular structures, enabling the interpretations on the material behaviors based on the chemical structure changes.

Analyses of Nano Epoxy-Silica Degradation in LEO Space Environment (저궤도 우주환경에서 에폭시-실리카 나노 복합소재의 열화거동 분석)

  • Jang, Seo-Hyun;Han, Yusu;Hwang, Do Soon;Jung, Joo Won;Kim, Yeong Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.945-952
    • /
    • 2020
  • In this study, the effects of Low Earth Orbit(LEO) environments on the degradation behavior of epoxy nano silica composite materials were investigated. The nanocomposite materials containing silica particles in different weight ratios of 10% and 18% were prepared and degraded in a LEO simulator to compare with the neat epoxy cases. Thermogravimetric analysis (TGA) was performed on the degraded nanocomposites and the activation energies were calculated by Friedman method, Flynn-Wall-Ozawa (FWO) method, Kissinger method, and DAEM (Distributed Activation Energy Method) based on the iso-conversional method. As the results, for the neat epoxy sample cases, it was found that the average activation energy was increased as the degradation was progressed. When the nano particles were mixed, however, the energy increased to the 15 environmental test cycles, and decreased afterwards, meaning that the particle mixture contributed adversely to the thermal degradation. Discussions on the results of the different calculation methods were also given.